Optimization and Validation of tools and algorithms that enable personalized care for patients with Chronic Low Back Pain

优化和验证工具和算法,为慢性腰痛患者提供个性化护理

基本信息

项目摘要

While there is good evidence for the role of biological, psychological, and social factors in the etiology and prognosis of back pain, the synthesis of the 3 in research and clinical practice is suboptimal. This precludes a personalized approach to cLPB treatment that would support improved clinical outcomes. The primary objective of this research project is to address the critical need for new diagnostic and prognostic markers and associated patient classification protocols for cLBP treatment. To achieve our objectives, we propose three aims to prioritize and/or validate novel instruments that assess critical domains of the biopsychosocial model, validate patient-centered outcome measures, and investigate their clinical utility using the UCSF REACH cLBP Clinical and Digital Cohorts. In Aim 1, we propose to validate common data elements (CDEs) that characterize important phenotypic traits in cLBP patients. These data elements will be aligned with domains of the biopsychosocial model (Aim 1a, bio- behavioral; Aim 1b, pathophysiological; and Aim 1c, functional/biomechanical). Before CDE's are introduced into the REACH clinical cohort, they will be prioritized into three categories by measures of reproducibility, diagnostic accuracy, and clinical validity: basic, supplemental, and emerging. Through this work, we will validate an imaging suite that researchers can use to study the spine pathologies in clinical cohorts, and clinicians can use to improve their care of cLBP patients. In Aim 2, we will define personalized outcome measures that constitute a clinically meaningful treatment effect for individual patients. These measures will be derived from the Patient-Reported Outcomes Measurement Information System (PROMIS), and will objectively determine 'what is acceptable' to the patient. In Aim 3 we will analyze phenotypic traits, using a combination of traditional data analyses and deep learning methods, to define clinically useful cLBP phenotypes. In both Aims 2 and 3, we will utilize both traditional statistical approaches and complex machine learning techniques. If we show that our machine learning models outperform the clinicians (who are currently inundated with data), these tools can prove to be beneficial clinical decision support systems in the setting of patient-centric treatment planning. Throughout, we plan dynamic interactions with the BACPAC consortium. BACPAC/REACH collaborations will enhance our abilities to successfully attain our ultimate goal of developing algorithms for personalized cLBP treatments that lead to improved clinical outcomes.
虽然有很好的证据表明,生物,心理和社会因素在病因学中的作用, 背痛的预后,在研究和临床实践中的3个综合是次优的。这就排除了 个性化的cLPB治疗方法,将支持改善临床结果。主 本研究项目的目的是解决新的诊断和预后的迫切需要, 用于cLBP治疗的标记物和相关的患者分类方案。为了实现我们的目标,我们 提出三个目标,优先考虑和(或)验证新的工具, 生物心理社会模型,验证以患者为中心的结局指标,并使用 UCSF REACH cLBP临床和数字队列。 在目标1中,我们建议验证共同的数据元素(CDE),表征重要的表型性状, cLBP患者这些数据元素将与生物心理社会模型的领域(目标1a,生物 行为;目标1b,病理生理学;目标1c,功能/生物力学)。在CDE被引入之前, 在REACH临床队列中,他们将通过再现性、诊断性和治疗性指标被优先分为三类。 准确性和临床有效性:基本、补充和新兴。通过这项工作,我们将验证成像 研究人员可以用来研究临床队列中脊柱病理,临床医生可以用来改善 cLBP患者的护理。 在目标2中,我们将定义构成具有临床意义的治疗效果的个性化结局指标 对于个别患者。这些指标将来自患者报告的结局指标 信息系统(PROMIS),并将客观地确定患者“可以接受什么”。 在目标3中,我们将结合传统数据分析和深度学习来分析表型性状。 方法,以定义临床上有用的cLBP表型。 在目标2和目标3中,我们将利用传统的统计方法和复杂的机器学习 技术.如果我们证明我们的机器学习模型优于临床医生(他们目前被淹没了 与数据),这些工具可以证明是有益的临床决策支持系统,在设置以患者为中心 治疗计划 在整个过程中,我们计划与BACPAC联盟进行动态互动。BACPAC/REACH合作将 提高我们的能力,成功实现我们的最终目标,开发个性化的cLBP算法 改善临床结果的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY C. LOTZ其他文献

JEFFREY C. LOTZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY C. LOTZ', 18)}}的其他基金

UCSF Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain
加州大学旧金山分校以患者为中心的慢性腰痛机制表型核心中心
  • 批准号:
    10765794
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    9898133
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
UCSF Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain
加州大学旧金山分校以患者为中心的慢性腰痛机制表型核心中心
  • 批准号:
    9898132
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine
肌肉骨骼生物学和医学核心中心
  • 批准号:
    10215388
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10765795
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
Core-001
核心001
  • 批准号:
    10908816
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
UCSF Core Center for Patient-centric Mechanistic Phenotyping in Chronic Low Back Pain
加州大学旧金山分校以患者为中心的慢性腰痛机制表型核心中心
  • 批准号:
    10208515
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
Optimization and Validation of tools and algorithms that enable personalized care for patients with Chronic Low Back Pain
优化和验证工具和算法,为慢性腰痛患者提供个性化护理
  • 批准号:
    10765796
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine
肌肉骨骼生物学和医学核心中心
  • 批准号:
    10642789
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:
Core Center for Musculoskeletal Biology and Medicine
肌肉骨骼生物学和医学核心中心
  • 批准号:
    10460469
  • 财政年份:
    2019
  • 资助金额:
    $ 901.53万
  • 项目类别:

相似海外基金

An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
    Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
    Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
    Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 901.53万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了