Molecular Mechanisms of Dynamin-related Protein 1-Mediated Mitochondrial Fission
动力相关蛋白1介导的线粒体分裂的分子机制
基本信息
- 批准号:9895369
- 负责人:
- 金额:$ 5.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-18 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAddressAlzheimer&aposs DiseaseCardiolipinsCardiovascular DiseasesCell SurvivalCell physiologyComplexCoupledDefectDiseaseDrug DesignDynaminEnvironmentFluorescenceFluorescence Resonance Energy TransferFoundationsGoalsGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHumanHuntington DiseaseHydrolysisLipidsMalignant NeoplasmsMeasuresMediatingMembraneMicroscopicMitochondriaModelingMolecularMolecular ConformationOrganellesOutcomes ResearchParkinson DiseasePhase TransitionPhospholipid InteractionProcessProteinsQuality ControlResearchRoleSiteSurfaceTestingTherapeuticTimeVariantconstrictiondesignexperimental studyfamilial dilated cardiomyopathyfluorescence imagingimprovedinnovationmitochondrial membranenervous system disordernovelnovel therapeuticspolymerizationpublic health relevancescaffoldsolid state nuclear magnetic resonance
项目摘要
PROJECT SUMMARY
Mitochondria are dynamic organelles that undergo continuous fission and fusion. Mitochondrial dynamics are
essential for cell survival, as well as for mitochondrial quality control, transport, distribution and inheritance.
Defects in mitochondrial dynamics are implicated in various neurological disorders including Alzheimer’s,
Parkinson’s and Huntington’s diseases, as well as in cardiovascular disease and cancer. The molecular
mechanisms that accomplish mitochondrial membrane fission and fusion are poorly understood, as are the roles
of the molecules involved in these processes. The long-term goal of this proposal is to address such issues. The
mechanoenzymatic GTPase, dynamin-related protein 1 (Drp1) is the master regulator of mitochondrial fission.
Cytosolic Drp1 initiates mitochondrial fission via interactions with adaptor proteins, Mff, MiD49/51, or Fis1
localized at the mitochondrial surface. Subsequent Drp1 polymerization as ‘helical scaffolds’ around pre-destined
mitochondrial division sites and GTP hydrolysis-driven scaffold constriction catalyzes mitochondrial fission.
Exciting new studies have also necessitated a cooperative role for direct Drp1-phospholipid interactions,
specifically with the mitochondrial lipid, cardiolipin (CL), in mitochondrial fission. However, very little is known
about the cooperativity of Drp1-adaptor and Drp1-CL interactions, either in space or in time, during this process.
Several unknown fundamental issues essential for understanding Drp1-mediated mitochondrial fission will be
addressed in this application. These include 1) the mechanisms underlying Drp1 CL recognition, and the identity
of Drp1 residues involved in specific phospholipid interactions, 2) the mechanism of the Drp1 variable domain
(VD) in CL reorganization and nonbilayer phase transition, 3) the domain-specific topography of Drp1 on the
membrane surface and conformational rearrangements that ensue upon specific adaptor and CL interactions,
and 4) the cooperativity of CL and adaptor interactions in effecting mitochondrial fission. The proposed
experiments will test the overarching hypothesis that cooperative Drp1 interactions with protein adaptors and CL
promote the formation of a productive “fission complex” that is localized in CL-rich micro-environments and drives
membrane remodeling and fission through a Drp1 GTP hydrolysis-dependent CL bilayer-to-nonbilayer phase
transition mechanism. We will use a tailor-made array of innovative fluorescence spectroscopic and microscopic
approaches, coupled to solution and solid state NMR, to address these issues. These include the use of a novel
variation of the FRET approach to determine domain-specific Drp1-membrane distances, collisional quenching
of fluorescence to determine and measure Drp1 VD membrane insertion, and fluorescence imaging on model
GUVs to visualize adaptor- and CL-regulated, Drp1-mediated membrane remodeling and fission. Successful
outcomes of this research will provide (i) a fundamentally improved understanding of the cooperative molecular
mechanisms underlying mitochondrial fission, and (ii) a molecular foundation for the design of drugs and
therapeutics that can beneficially modulate mitochondrial dynamics under various disease states.
项目摘要
线粒体是一种动态的细胞器,经历不断的分裂和融合。线粒体动力学是
对于细胞生存以及线粒体质量控制、运输、分布和遗传至关重要。
线粒体动力学的缺陷与各种神经系统疾病有关,包括阿尔茨海默氏症,
帕金森氏症和亨廷顿氏症,以及心血管疾病和癌症。分子
完成线粒体膜分裂和融合的机制知之甚少,
参与这些过程的分子。这项建议的长期目标是解决这些问题。的
动力蛋白相关蛋白1(Drp 1)是线粒体分裂的主要调节因子。
胞浆Drp 1通过与衔接蛋白Mff、MiD 49/51或Fis 1相互作用启动线粒体分裂
位于线粒体表面。随后的Drp 1聚合作为“螺旋支架”围绕预定的
线粒体分裂位点和GTP水解驱动的支架收缩催化线粒体分裂。
令人兴奋的新研究也需要直接Drp 1-磷脂相互作用的合作作用,
特别是与线粒体脂质,心磷脂(CL),在线粒体分裂。然而,
关于Drp 1-adaptor和Drp 1-CL相互作用的协同性,无论是在空间上还是在时间上,在这个过程中。
以下是几个对于理解Drp 1介导的线粒体分裂至关重要的未知基本问题:
在这个应用程序中解决。这些包括1)Drp 1 CL识别的潜在机制,以及
2)Drp 1可变结构域的作用机制
(VD)在CL重组和非双层相变中,3)Drp 1在
特定衔接子和CL相互作用后发生的膜表面和构象重排,
CL和衔接子相互作用在影响线粒体分裂中的协同作用。拟议
实验将测试总体假设,合作Drp 1与蛋白质衔接子和CL相互作用
促进在CL丰富的微环境和驱动器中本地化的生产性“裂变复合体”的形成
通过Drp 1 GTP水解依赖性CL双层到非双层相的膜重塑和分裂
过渡机制我们将使用量身定制的创新荧光光谱和显微阵列
方法,再加上解决方案和固态NMR,以解决这些问题。其中包括使用一本小说
FRET方法的变化,以确定结构域特异性Drp 1-膜距离,碰撞淬灭
以确定和测量Drp 1 VD膜插入,并在模型上进行荧光成像
GUV可视化适配器和CL调节,Drp 1介导的膜重塑和裂变。成功
这项研究的结果将提供(i)从根本上提高对合作分子的理解,
线粒体分裂的潜在机制,以及(ii)药物设计的分子基础,
在各种疾病状态下可以有益地调节线粒体动力学的治疗剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Ramachandran其他文献
Rajesh Ramachandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Ramachandran', 18)}}的其他基金
Conformational Dynamics of the Dynamin PH domain in Synaptic Vesicle Endocytosis
突触小泡胞吞作用中 Dynamin PH 结构域的构象动力学
- 批准号:
10057144 - 财政年份:2020
- 资助金额:
$ 5.76万 - 项目类别:
Molecular Mechanisms of Dynamin-related Protein 1-Mediated Mitochondrial Fission
动力相关蛋白1介导的线粒体分裂的分子机制
- 批准号:
10251912 - 财政年份:2017
- 资助金额:
$ 5.76万 - 项目类别:
Molecular Mechanisms of Rapid Synaptic Vesicle Endocytosis
快速突触小泡内吞作用的分子机制
- 批准号:
9299552 - 财政年份:2017
- 资助金额:
$ 5.76万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Research Grant