Uncovering mechanisms of myelin formation and regeneration in the live brain
揭示活脑中髓磷脂形成和再生的机制
基本信息
- 批准号:9766413
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ANK3 geneAcademic advisingAction PotentialsAcuteAdultAnimalsAstrocytesAxonBrainCSPG4 geneCell Differentiation processCellsCentral Nervous System DiseasesCerebral cortexCessation of lifeCognitionCollaborationsCommunicationComplexCoupledCouplingDemyelinating DiseasesDemyelinationsDepositionDevelopmentDiseaseDyesEnsureEnvironmentEventFluorescenceFluorescent DyesFoundationsGap JunctionsGenerationsGenesGiant CellsGoalsGrowthHourHumanImageInjuryInvestigationKnowledgeLabelLearningLifeLightMaintenanceMentorshipMethodsMicroscopyMolecularMolecular WeightMultiple SclerosisMusMyelinNatural regenerationNervous System PhysiologyNervous system structureNeuraxisNeurogliaNeuronal PlasticityNeuronsNeurosciences ResearchNodalOligodendrogliaOpticsPathologyPermeabilityPhasePlayPopulationProcessRanvier&aposs NodesReporterResearchResearch PersonnelResolutionRoleSodium ChannelStem cellsStereotypingStretchingStructureSystemTechniquesTestingTimeTissuesTrainingUniversitiesbasecareercellular imagingdesignexperimental studyimaging platformin vivoin vivo imagingmouse modelmyelinationnervous system disorderneural networknovelnovel strategiesoligodendrocyte myelinationprogenitorpromoterremyelinationresponse to injuryserial imagingsingle cell analysisspatiotemporalstemsulforhodamine 101tool
项目摘要
Myelin formation and maintenance is vital for proper neuronal communication and its disruption is associated
with numerous diseases of the central nervous system. Oligodendrocytes make myelin and are the only cells in
the adult cerebral cortex that are continuously generated from a population of resident progenitors, called NG2
cells. Thus, protracted oligodendrocyte and myelin formation into adulthood constitutes a unique, understudied
system for adult neuroplasticity, with broad implications for human cognition and disease. Understanding the
process of oligodendrocyte generation is fundamental to dissect roles played by oligodendrocytes and
myelination in nervous system function, plasticity, and disease. We have a rudimentary understanding of how
new oligodendrocytes are generated in vivo. Reasons for this stem from inadequate tools for their dynamic
investigation in the live brain. In light of these challenges, my long-term goals are to develop and apply optical
and single cell molecular based approaches to dissect multicellular interactions in the intact developing and
diseased nervous system, with a primary focus on the interface between the axon and oligodendrocyte.
Realization of this goal has begun as we have now developed a range of novel complementary tools that allow
unprecedented detailed investigation into the transformation of single progenitor cells into gap junction-coupled,
mature myelinating oligodendrocytes in vivo. This proposal will implement and expand on these tools to ask
several fundamental questions basic to our understanding of adult nervous system plasticity and response to
injury. First, during the K99 phase, the in vivo dynamics of oligodendrocyte differentiation, gap junction coupling
and internode assembly during initial myelin formation and after a demyelinating event will be determined. Next,
a new method will be used to determine the developmental profile, longitudinal dynamics, and effects of
demyelination on internode and Node of Ranvier assembly and distribution along extensive stretches of single
axons. Finally, during the R00 phase, using a powerful combination of in vivo imaging and single cell molecular
manipulation techniques learned during the K99 training period, the effects of myelin deposition on dynamic
axonal structural plasticity will be tested. Overall the research portions of this proposal will uncover how functional
internodes initially form, restructure throughout life, respond to oligodendrocyte death, and interact with the axon
to influence its structural plasticity, all for the first time in the live brain. The aims set out in this proposal will
provide the foundation for implementing these in vivo optical tools during the R00 phase. Furthermore this
strategy will provide fundamental training in novel approaches for molecular design with unique intellectual,
professional and academic guidance during the K99 phase under the mentorship of Dr. Jaime Grutzendler in
collaboration with consultant Dr. Anthony Koleske and the vibrant neuroscience research environment at Yale
University. The combination of learning a new set of molecular approaches and implementing our powerful in
vivo imaging platform will ensure a unique skillset and perspective, critical components for a successful career
as an independent investigator.
髓磷脂的形成和维持对于正常的神经元通讯至关重要,其破坏与
患有多种中枢神经系统疾病。少突胶质细胞产生髓磷脂,并且是唯一的细胞
成年大脑皮层由常驻祖细胞群不断产生,称为 NG2
细胞。因此,进入成年期的长期少突胶质细胞和髓磷脂形成构成了一种独特的、尚未得到充分研究的机制。
成人神经可塑性系统,对人类认知和疾病具有广泛影响。了解
少突胶质细胞的生成过程是剖析少突胶质细胞所发挥的作用的基础,
髓鞘形成对神经系统功能、可塑性和疾病的影响。我们对如何进行初步了解
新的少突胶质细胞在体内产生。造成这种情况的原因源于其动态工具不足
在活体大脑中进行研究。鉴于这些挑战,我的长期目标是开发和应用光学
以及基于单细胞分子的方法来剖析完整发育和发育过程中的多细胞相互作用
患病的神经系统,主要集中在轴突和少突胶质细胞之间的界面。
这一目标的实现已经开始,我们现在已经开发了一系列新颖的补充工具,这些工具允许
对单个祖细胞转化为间隙连接耦合的前所未有的详细研究,
体内成熟的髓鞘少突胶质细胞。该提案将实施并扩展这些工具来询问
我们理解成人神经系统可塑性和反应的几个基本问题
受伤。首先,在K99阶段,少突胶质细胞分化、间隙连接耦合的体内动力学
并确定初始髓磷脂形成期间和脱髓鞘事件之后的节间组装。下一个,
将使用一种新方法来确定发育概况、纵向动态和影响
节间和朗飞节的脱髓鞘组装和沿单节广泛延伸的分布
轴突。最后,在 R00 阶段,使用体内成像和单细胞分子的强大组合
K99训练期间学到的操作技巧,髓磷脂沉积对动态的影响
将测试轴突结构可塑性。总体而言,该提案的研究部分将揭示功能如何
节间最初形成,在整个生命过程中重组,对少突胶质细胞死亡做出反应,并与轴突相互作用
影响其结构可塑性,这在活体大脑中还是第一次。本提案中提出的目标将
为在 R00 阶段实施这些体内光学工具提供基础。此外这
战略将提供分子设计新方法的基础培训,具有独特的知识、
K99 阶段在 Jaime Grutzendler 博士的指导下进行专业和学术指导
与顾问 Anthony Koleske 博士的合作以及耶鲁大学充满活力的神经科学研究环境
大学。学习一套新的分子方法和实施我们强大的技术相结合
Vivo 成像平台将确保独特的技能和视角,这是职业成功的关键组成部分
作为一名独立调查员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Hill其他文献
Robert Hill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Hill', 18)}}的其他基金
Glial mechanisms governing the removal and repair of degenerating myelin
控制退化髓磷脂去除和修复的神经胶质机制
- 批准号:
10430280 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Glial Mechanisms Governing the Removal and Repair of Degenerating Myelin
控制退化髓磷脂去除和修复的神经胶质机制
- 批准号:
10680427 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Glial mechanisms governing the removal and repair of degenerating myelin
控制退化髓磷脂去除和修复的神经胶质机制
- 批准号:
10276003 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Glial Mechanisms Governing the Removal and Repair of Degenerating Myelin
控制退化髓磷脂去除和修复的神经胶质机制
- 批准号:
10840520 - 财政年份:2021
- 资助金额:
$ 24.89万 - 项目类别:
Cellular mechanisms of cortical myelin plasticity and regeneration in vivo
体内皮质髓磷脂可塑性和再生的细胞机制
- 批准号:
8836141 - 财政年份:2014
- 资助金额:
$ 24.89万 - 项目类别:
相似海外基金
Supporting STEM Academic Advising for Undergraduate Student Achievement
支持本科生成绩的 STEM 学术建议
- 批准号:
2314844 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
Effective Academic Advising for Student Success and Aiming at University's Mission
为学生的成功和大学使命提供有效的学术建议
- 批准号:
20K02950 - 财政年份:2020
- 资助金额:
$ 24.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combining Computers and People to Reform Academic Advising in Engineering Education
计算机与人的结合改革工程教育中的学术咨询
- 批准号:
9354676 - 财政年份:1994
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant














{{item.name}}会员




