Uncovering mechanisms of myelin formation and regeneration in the live brain

揭示活脑中髓磷脂形成和再生的机制

基本信息

  • 批准号:
    9766413
  • 负责人:
  • 金额:
    $ 24.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Myelin formation and maintenance is vital for proper neuronal communication and its disruption is associated with numerous diseases of the central nervous system. Oligodendrocytes make myelin and are the only cells in the adult cerebral cortex that are continuously generated from a population of resident progenitors, called NG2 cells. Thus, protracted oligodendrocyte and myelin formation into adulthood constitutes a unique, understudied system for adult neuroplasticity, with broad implications for human cognition and disease. Understanding the process of oligodendrocyte generation is fundamental to dissect roles played by oligodendrocytes and myelination in nervous system function, plasticity, and disease. We have a rudimentary understanding of how new oligodendrocytes are generated in vivo. Reasons for this stem from inadequate tools for their dynamic investigation in the live brain. In light of these challenges, my long-term goals are to develop and apply optical and single cell molecular based approaches to dissect multicellular interactions in the intact developing and diseased nervous system, with a primary focus on the interface between the axon and oligodendrocyte. Realization of this goal has begun as we have now developed a range of novel complementary tools that allow unprecedented detailed investigation into the transformation of single progenitor cells into gap junction-coupled, mature myelinating oligodendrocytes in vivo. This proposal will implement and expand on these tools to ask several fundamental questions basic to our understanding of adult nervous system plasticity and response to injury. First, during the K99 phase, the in vivo dynamics of oligodendrocyte differentiation, gap junction coupling and internode assembly during initial myelin formation and after a demyelinating event will be determined. Next, a new method will be used to determine the developmental profile, longitudinal dynamics, and effects of demyelination on internode and Node of Ranvier assembly and distribution along extensive stretches of single axons. Finally, during the R00 phase, using a powerful combination of in vivo imaging and single cell molecular manipulation techniques learned during the K99 training period, the effects of myelin deposition on dynamic axonal structural plasticity will be tested. Overall the research portions of this proposal will uncover how functional internodes initially form, restructure throughout life, respond to oligodendrocyte death, and interact with the axon to influence its structural plasticity, all for the first time in the live brain. The aims set out in this proposal will provide the foundation for implementing these in vivo optical tools during the R00 phase. Furthermore this strategy will provide fundamental training in novel approaches for molecular design with unique intellectual, professional and academic guidance during the K99 phase under the mentorship of Dr. Jaime Grutzendler in collaboration with consultant Dr. Anthony Koleske and the vibrant neuroscience research environment at Yale University. The combination of learning a new set of molecular approaches and implementing our powerful in vivo imaging platform will ensure a unique skillset and perspective, critical components for a successful career as an independent investigator.
髓鞘的形成和维持对于正常的神经元交流至关重要,而髓鞘的破坏与 患有多种中枢神经系统疾病。少突胶质细胞制造髓鞘,是唯一的 由一群称为NG2的常驻祖细胞连续产生的成年大脑皮层 细胞。因此,少突胶质细胞和髓鞘的长期形成构成了一种独特的、未被研究的 成人神经可塑性系统,对人类认知和疾病具有广泛的影响。了解 少突胶质细胞的生成过程是剖析少突胶质细胞和 神经系统功能、可塑性和疾病中的髓鞘形成。我们对此有一个初步的了解 新的少突胶质细胞在体内生成。出现这种情况的原因是没有足够的工具来实现其动态 在活的大脑中进行研究。鉴于这些挑战,我的长期目标是开发和应用光学 和基于单细胞分子的方法来剖析完整的发育和 神经系统病变,主要集中在轴突和少突胶质细胞之间的界面。 这一目标的实现已经开始,因为我们现在已经开发了一系列新颖的补充工具,使 对单个祖细胞转变为缝隙连接偶联的史无前例的详细研究, 体内成熟的髓鞘少突胶质细胞。本提案将在这些工具的基础上进行实施和扩展以询问 几个基本问题是我们理解成人神经系统可塑性和对 受伤。其一,在K99期,体内少突胶质细胞分化动力学、缝隙连接偶联 以及在初始髓鞘形成期间和脱髓鞘事件之后的节间组装将被确定。下一首, 将使用一种新的方法来确定发育概况、纵向动态和影响 兰维尔纤维在节间和节间的脱髓鞘组装及沿单株广泛分布 轴突。最后,在R00阶段,使用体内成像和单细胞分子的强大组合 K99训练期学到的手法技巧,髓鞘沉积对动力学的影响 将测试轴突结构的可塑性。总体而言,这项提案的研究部分将揭示其功能 节间最初形成,在整个生命过程中进行重组,对少突胶质细胞死亡作出反应,并与轴突相互作用。 来影响它的结构可塑性,这在活的大脑中是第一次。这项提案中提出的目标将 为在R00阶段实施这些活体光学工具奠定基础。此外,这一点 战略将提供分子设计的新方法的基础培训,具有独特的智力, 在Jaime Grutzendler博士的指导下,K99阶段的专业和学术指导 与顾问安东尼·科莱斯克博士的合作以及耶鲁充满活力的神经科学研究环境 大学。学习一套新的分子方法和实现我们强大的 VIVO成像平台将确保独特的技能和视角,这是成功职业生涯的关键组件 作为一名独立调查员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hill其他文献

Robert Hill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hill', 18)}}的其他基金

Glial mechanisms governing the removal and repair of degenerating myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10430280
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Glial Mechanisms Governing the Removal and Repair of Degenerating Myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10680427
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Glial mechanisms governing the removal and repair of degenerating myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10276003
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Glial Mechanisms Governing the Removal and Repair of Degenerating Myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10840520
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Cellular mechanisms of cortical myelin plasticity and regeneration in vivo
体内皮质髓磷脂可塑性和再生的细胞机制
  • 批准号:
    8836141
  • 财政年份:
    2014
  • 资助金额:
    $ 24.89万
  • 项目类别:

相似海外基金

Supporting STEM Academic Advising for Undergraduate Student Achievement
支持本科生成绩的 STEM 学术建议
  • 批准号:
    2314844
  • 财政年份:
    2023
  • 资助金额:
    $ 24.89万
  • 项目类别:
    Standard Grant
Effective Academic Advising for Student Success and Aiming at University's Mission
为学生的成功和大学使命提供有效的学术建议
  • 批准号:
    20K02950
  • 财政年份:
    2020
  • 资助金额:
    $ 24.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combining Computers and People to Reform Academic Advising in Engineering Education
计算机与人的结合改革工程教育中的学术咨询
  • 批准号:
    9354676
  • 财政年份:
    1994
  • 资助金额:
    $ 24.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了