Uncovering mechanisms of myelin formation and regeneration in the live brain

揭示活脑中髓磷脂形成和再生的机制

基本信息

  • 批准号:
    9766413
  • 负责人:
  • 金额:
    $ 24.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Myelin formation and maintenance is vital for proper neuronal communication and its disruption is associated with numerous diseases of the central nervous system. Oligodendrocytes make myelin and are the only cells in the adult cerebral cortex that are continuously generated from a population of resident progenitors, called NG2 cells. Thus, protracted oligodendrocyte and myelin formation into adulthood constitutes a unique, understudied system for adult neuroplasticity, with broad implications for human cognition and disease. Understanding the process of oligodendrocyte generation is fundamental to dissect roles played by oligodendrocytes and myelination in nervous system function, plasticity, and disease. We have a rudimentary understanding of how new oligodendrocytes are generated in vivo. Reasons for this stem from inadequate tools for their dynamic investigation in the live brain. In light of these challenges, my long-term goals are to develop and apply optical and single cell molecular based approaches to dissect multicellular interactions in the intact developing and diseased nervous system, with a primary focus on the interface between the axon and oligodendrocyte. Realization of this goal has begun as we have now developed a range of novel complementary tools that allow unprecedented detailed investigation into the transformation of single progenitor cells into gap junction-coupled, mature myelinating oligodendrocytes in vivo. This proposal will implement and expand on these tools to ask several fundamental questions basic to our understanding of adult nervous system plasticity and response to injury. First, during the K99 phase, the in vivo dynamics of oligodendrocyte differentiation, gap junction coupling and internode assembly during initial myelin formation and after a demyelinating event will be determined. Next, a new method will be used to determine the developmental profile, longitudinal dynamics, and effects of demyelination on internode and Node of Ranvier assembly and distribution along extensive stretches of single axons. Finally, during the R00 phase, using a powerful combination of in vivo imaging and single cell molecular manipulation techniques learned during the K99 training period, the effects of myelin deposition on dynamic axonal structural plasticity will be tested. Overall the research portions of this proposal will uncover how functional internodes initially form, restructure throughout life, respond to oligodendrocyte death, and interact with the axon to influence its structural plasticity, all for the first time in the live brain. The aims set out in this proposal will provide the foundation for implementing these in vivo optical tools during the R00 phase. Furthermore this strategy will provide fundamental training in novel approaches for molecular design with unique intellectual, professional and academic guidance during the K99 phase under the mentorship of Dr. Jaime Grutzendler in collaboration with consultant Dr. Anthony Koleske and the vibrant neuroscience research environment at Yale University. The combination of learning a new set of molecular approaches and implementing our powerful in vivo imaging platform will ensure a unique skillset and perspective, critical components for a successful career as an independent investigator.
髓磷脂的形成和维持对于正常的神经元通讯至关重要,其破坏与 患有多种中枢神经系统疾病少突胶质细胞制造髓鞘,是脑内唯一的细胞。 成年人的大脑皮层是由一群称为NG2的常驻祖细胞不断产生的 细胞因此,延长少突胶质细胞和髓鞘形成到成年期构成了一个独特的,未充分研究的 成人神经可塑性系统,对人类认知和疾病具有广泛的影响。了解 少突胶质细胞生成的过程是剖析少突胶质细胞所起作用的基础, 髓鞘形成在神经系统功能、可塑性和疾病中的作用。我们基本了解了 在体内产生新的少突胶质细胞。其原因是缺乏充分的工具, 活脑中的研究。鉴于这些挑战,我的长期目标是开发和应用光学 和基于单细胞分子的方法来剖析完整发育中的多细胞相互作用, 疾病的神经系统,主要集中在轴突和少突胶质细胞之间的界面。 这一目标的实现已经开始,因为我们现在已经开发了一系列新的补充工具, 对单个祖细胞转化为缝隙连接偶联的, 体内成熟的髓鞘少突胶质细胞。该提案将实施并扩展这些工具, 几个基本问题是我们了解成人神经系统可塑性和对 损伤首先,在K99期,少突胶质细胞分化、间隙连接偶联和细胞凋亡的体内动力学变化。 以及在初始髓鞘形成期间和脱髓鞘事件之后的节间组装。接下来, 一种新的方法将被用来确定发展概况,纵向动力学,和影响, 节间和Ranvier结上的脱髓鞘沿着沿着广泛的单个 轴突最后,在R00阶段,使用体内成像和单细胞分子标记的强大组合, 在K99训练期间学习的操作技术,髓鞘沉积对动力学的影响 将测试轴突结构可塑性。总的来说,本提案的研究部分将揭示功能性 节间最初形成,在整个生命过程中重组,对少突胶质细胞死亡作出反应,并与轴突相互作用 来影响其结构可塑性,这是第一次在活体大脑中进行。本提案中提出的目标将 为在R00阶段实施这些体内光学工具提供了基础。此外,这 战略将提供基本培训,在新的方法,分子设计与独特的智力, 在K99阶段,在Jaime Grutzendler博士的指导下, 与顾问Anthony Koleske博士和耶鲁大学充满活力的神经科学研究环境合作 大学学习一套新的分子方法和实施我们强大的 vivo成像平台将确保独特的技能和视角,成功职业生涯的关键组成部分 作为一名独立调查员

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hill其他文献

Robert Hill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hill', 18)}}的其他基金

Glial mechanisms governing the removal and repair of degenerating myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10430280
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Glial Mechanisms Governing the Removal and Repair of Degenerating Myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10680427
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Glial mechanisms governing the removal and repair of degenerating myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10276003
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Glial Mechanisms Governing the Removal and Repair of Degenerating Myelin
控制退化髓磷脂去除和修复的神经胶质机制
  • 批准号:
    10840520
  • 财政年份:
    2021
  • 资助金额:
    $ 24.89万
  • 项目类别:
Cellular mechanisms of cortical myelin plasticity and regeneration in vivo
体内皮质髓磷脂可塑性和再生的细胞机制
  • 批准号:
    8836141
  • 财政年份:
    2014
  • 资助金额:
    $ 24.89万
  • 项目类别:

相似海外基金

Supporting STEM Academic Advising for Undergraduate Student Achievement
支持本科生成绩的 STEM 学术建议
  • 批准号:
    2314844
  • 财政年份:
    2023
  • 资助金额:
    $ 24.89万
  • 项目类别:
    Standard Grant
Effective Academic Advising for Student Success and Aiming at University's Mission
为学生的成功和大学使命提供有效的学术建议
  • 批准号:
    20K02950
  • 财政年份:
    2020
  • 资助金额:
    $ 24.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combining Computers and People to Reform Academic Advising in Engineering Education
计算机与人的结合改革工程教育中的学术咨询
  • 批准号:
    9354676
  • 财政年份:
    1994
  • 资助金额:
    $ 24.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了