FlatScopes for Implantable and Scalable Optical Imaging of Neural Activity
用于神经活动可植入和可扩展光学成像的 FlatScopes
基本信息
- 批准号:9766309
- 负责人:
- 金额:$ 21.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnimalsArchitectureAreaBrainBrain regionCalciumCellsChronicEmerging TechnologiesEnvironmentFluorescenceFluorescence MicroscopyFundingGoalsHeadHydrogelsImageImaging technologyImplantIn VitroIndividualMammalsMasksMeasurementMeasuresMicroscopeMicroscopyMicrospheresNeuronsOperating SystemOptical MethodsOpticsPerformanceProteinsPublic HealthRattusResolutionSiliconSourceStudentsSurfaceSystemTechniquesTechnologyThickTimeTissuesTranslatingWorkbasebiomaterial compatibilitycalcium indicatordata acquisitiondesigndetectorfluorescence imagingfluorescence microscopeimage reconstructionimaging approachimaging capabilitiesimaging systemimprovedin vivolenslight weightmillimeterminiaturizemultiplexed imagingnanofabricationnervous system disorderoptical imagingprototyperelating to nervous systemresponsesensortoolvoltage
项目摘要
Project Summary:
Large-scale measurement of individual neuronal activity in intact animals will accelerate the understanding of
the brain and treatment of neurological disorders. Fortunately, the last decade has witnessed dramatic
improvements in optical methods to record neural activity based on new genetically encoded calcium- or
voltage-dependent fluorescence proteins. These optical techniques have the potential to record activity from
many thousands of neurons with single-cell resolution because cell activity can be imaged from the surface of
the brain without implants that damage neural tissue.
Unfortunately, the current tools for fluorescence microscopy in freely moving animals are incapable of
recording from more than a few hundred cells at a time due to the large microscope size and small field of
view (FOV). To achieve simultaneous imaging of thousands of individual neurons in mammals, fluorescence
microscopes must be miniaturized and arrayed so that animals can freely interact with their environment
while images of neural activity are constantly recorded over large areas of brain.
The goal of our work is to create a new class of flat microscopes (each with a large FOV) that can be arrayed and placed on
the brain of a free-moving animal. These microscope arrays will thereby provide continuous imaging over large areas of
the brain with cellular resolution in freely moving animals. We also envision that these FlatScopes could be implanted
into the brain to measure neural activity from regions that are too deep to image from the surface.
To create these FlatScopes we will exploit emerging technologies from the field computational imaging, which
make it now possible to replace the expensive, heavy and thick lenses in microscopes with a compact,
lightweight, and inexpensive diffractive mask placed near the sensor. Images can then be reconstructed using
algorithms that recover the fluorescence images from the multiplexed sensor measurements. Our team of PIs
with expertise in computational imaging, nanofabricated neural interfaces, and in vivo neural data acquisition will work
to translate the ideas of lens-free imaging to implantable microfabricated FlatScopes that can image neural activity in
freely moving animals.
Our goal with R21 funding is to design, fabricate, and characterize individual implantable FlatScopes, both in
vitro and in vivo, laying the groundwork for a scalable imaging technology to measure calcium- or voltage-
sensitive fluorescence in thousands of neurons with single cell resolution.
项目概要:
对完整动物个体神经元活动的大规模测量将加速对
大脑和神经系统疾病的治疗。幸运的是,过去十年见证了戏剧性的变化
基于新的遗传编码的钙离子或钙离子的光学方法的改进,
电压依赖性荧光蛋白。这些光学技术有可能记录来自
成千上万的神经元具有单细胞分辨率,因为细胞活动可以从表面成像。
没有植入损伤神经组织的植入物
不幸的是,目前用于自由移动动物的荧光显微镜工具无法
由于大的显微镜尺寸和小的视场,
视图(FOV)。为了实现哺乳动物中数千个单个神经元的同时成像,
显微镜必须小型化和阵列化,以便动物能够自由地与环境互动
而神经活动的图像在大脑的大区域上被不断地记录。
我们工作的目标是创造一种新的平面显微镜(每个都有一个大的FOV),可以阵列和放置在
自由活动动物的大脑因此,这些显微镜阵列将提供大面积的连续成像。
自由运动动物的大脑具有细胞分辨率。我们还设想这些FlatScopes可以植入
进入大脑来测量那些太深而无法从表面成像的区域的神经活动。
为了创造这些FlatScopes,我们将利用来自现场计算成像的新兴技术,
使得现在可以用紧凑的,
重量轻,廉价的衍射掩模放置在传感器附近。然后,可以使用
从多路复用传感器测量恢复荧光图像的算法。我们的PI团队
具有计算成像、纳米制造神经接口和体内神经数据采集方面的专业知识,
将无透镜成像的想法转化为可植入的微制造FlatScopes,可以在
自由移动的动物
我们的目标与R21资金是设计,制造和表征个人植入式FlatScopes,无论是在
体外和体内,为可扩展的成像技术奠定基础,以测量钙或电压,
在数千个神经元中的灵敏荧光,具有单细胞分辨率。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PhlatCam: Designed Phase-Mask Based Thin Lensless Camera
- DOI:10.1109/tpami.2020.2987489
- 发表时间:2020-07-01
- 期刊:
- 影响因子:23.6
- 作者:Boominathan, Vivek;Adams, Jesse K.;Veeraraghavan, Ashok
- 通讯作者:Veeraraghavan, Ashok
Integrated light-sheet illumination using metallic slit microlenses.
- DOI:10.1364/oe.26.027326
- 发表时间:2018-10
- 期刊:
- 影响因子:3.8
- 作者:Fan Ye;B. Avants;A. Veeraraghavan;Jacob T. Robinson
- 通讯作者:Fan Ye;B. Avants;A. Veeraraghavan;Jacob T. Robinson
Generalized method to design phase masks for 3D super-resolution microscopy
设计 3D 超分辨率显微镜相位掩模的通用方法
- DOI:10.1364/oe.27.003799
- 发表时间:2019
- 期刊:
- 影响因子:3.8
- 作者:Wang, Wenxiao;Ye, Fan;Shen, Hao;Moringo, Nicholas A.;Dutta, Chayan;Robinson, Jacob T.;Landes, Christy F.
- 通讯作者:Landes, Christy F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caleb Kemere其他文献
Caleb Kemere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caleb Kemere', 18)}}的其他基金
FlatScopes for Implantable and Scalable Optical Imaging of Neural Activity
用于神经活动可植入和可扩展光学成像的 FlatScopes
- 批准号:
9591524 - 财政年份:2018
- 资助金额:
$ 21.52万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 21.52万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 21.52万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 21.52万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 21.52万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 21.52万 - 项目类别:
Discovery Projects