Remote Neurostimulation with Ultrasound-activated Piezoelectric Nanoparticles
使用超声波激活压电纳米粒子进行远程神经刺激
基本信息
- 批准号:9766304
- 负责人:
- 金额:$ 23.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAntibodiesAreaAxonBariumBiological AssayBrainCell Culture TechniquesCellsChargeChronicCommunitiesComplexCulture MediaDataDevelopmentDiseaseElectrodesEngineeringEquipmentFocused UltrasoundGated Ion ChannelGenerationsGoalsHeatingHippocampus (Brain)Implanted ElectrodesIon Channel GatingKnowledgeLabelLasersLightMembraneMethodsMicroscopyNanotechnologyNeuraxisNeurologicNeuronsNeurosciencesNeurosciences ResearchOperative Surgical ProceduresOutcomePenetrationPharmacologyPhysiologic pulsePropertyProsthesisProteinsRattusReporterResearchResearch PriorityResolutionResourcesSafetySecondary toSignal TransductionSolubilitySpecificityStimulusSurfaceTechniquesTechnologyTestingTissuesTransducersUltrasonic TherapyUltrasonic waveUltrasonographyWorkbasebehavioral studybiomaterial compatibilitybrain volumecell typecytotoxicityfluorescence imaginggenetic manipulationimprovedin vivointerestlight gatedlight scatteringmagnetic fieldmillimeternanomaterialsnanoparticleneural circuitneural networkneural stimulationneurofascinneuropathologyoptical imagingoptogeneticsprosthesis controlquasarreceptorrelating to nervous systemresponsesensorspatiotemporalsuccesstemporal measurementtoolvoltage
项目摘要
Project Summary
The ability to trigger neural activity with high resolution millimeters to centimeters deep in tissue remains an
elusive goal in neuroscience research. Current research relies on using invasive electrodes, optogenetics, or
pharmacological stimulation. None of these technologies, however, is capable of providing large-scale neural
stimulation with high spatial resolution. In this project, we propose to combine piezoelectric barium titanate
nanoparticles with ultrasound excitation to trigger neural activity. Ultrasound energy can be tightly focused in the
brain with very high spatiotemporal resolution. However, ultrasound alone is not an efficient way to activate a
specific set of neurons. Thus, we will use barium titanate nanoparticles to act as an embedded transducer to
convert ultrasound to electrical energy. We will target the nanoparticles with antibodies to Neurofascin 186
receptors on rat hippocampal membranes, enabling neuron specific labeling at the axon initial segment. Then,
highly focused ultrasound energy will be used to depolarize neurons with high spatial specificity. These methods
will be validated with optical imaging of cultured rat hippocampal neurons labeled with Quasar, a genetically
encoded fluorescent voltage sensor. Finally, we will investigate the mechanisms for action potential generation
with the piezoelectric nanoparticles. These results will pave the way for in vivo ultrasound stimulation of groups
of neurons at small spatial scales. Overall, the proposed technology has the potential to dramatically improve
the ability to study complex neural networks.
项目概要
以高分辨率触发组织深处几毫米到几厘米的神经活动的能力仍然是一个难题
神经科学研究中难以捉摸的目标。目前的研究依赖于使用侵入性电极、光遗传学或
药理刺激。然而,这些技术都无法提供大规模的神经网络
高空间分辨率的刺激。在这个项目中,我们建议结合压电钛酸钡
纳米粒子通过超声波激发来触发神经活动。超声波能量可以紧密聚焦在
大脑具有非常高的时空分辨率。然而,单独使用超声波并不能有效地激活
特定的神经元组。因此,我们将使用钛酸钡纳米粒子作为嵌入式传感器
将超声波转化为电能。我们将用 Neurofascin 186 抗体靶向纳米颗粒
大鼠海马膜上的受体,能够在轴突起始段进行神经元特异性标记。然后,
高度聚焦的超声能量将用于以高空间特异性对神经元进行去极化。这些方法
将通过用 Quasar 标记的培养的大鼠海马神经元的光学成像进行验证,Quasar 是一种基因
编码荧光电压传感器。最后,我们将研究动作电位产生的机制
与压电纳米颗粒。这些结果将为群体体内超声刺激铺平道路
小空间尺度的神经元。总体而言,所提出的技术有可能显着改善
研究复杂神经网络的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey P. Luke其他文献
Spectroscopic Photoacoustic Imaging for the Detection of Lymph Node Metastases
用于检测淋巴结转移的光谱光声成像
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Geoffrey P. Luke;K. Sokolov;S. Emelianov - 通讯作者:
S. Emelianov
Three-Dimensional Image Reconstruction Using Compressed Interferometric Detection of Photoacoustic Waves
使用光声波压缩干涉检测重建三维图像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
John E. Heggland;Geoffrey P. Luke - 通讯作者:
Geoffrey P. Luke
Snap-valve cerebral shunt design for intracranial pressure operation and ultrasound visualization.
用于颅内压操作和超声可视化的卡压阀脑分流器设计。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.2
- 作者:
S. Mitchell;G. Grangard;W. Kahouli;C. Dalldorf;A. Crain;Eldred Lee;A. Hamlin;L. Feeney;H. Johnstone;Geoffrey P. Luke;S. G. Diamond;David F. Bauer - 通讯作者:
David F. Bauer
Spectroscopic Photoacoustic Imaging of Gold Nanorods.
金纳米棒的光谱光声成像。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. V. Namen;Geoffrey P. Luke - 通讯作者:
Geoffrey P. Luke
Geoffrey P. Luke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey P. Luke', 18)}}的其他基金
Multiplex Ultrasound Imaging for the Detection of Head and Neck Lymph Node Micrometastases
用于检测头颈部淋巴结微转移的多重超声成像
- 批准号:
10870266 - 财政年份:2023
- 资助金额:
$ 23.15万 - 项目类别:
Ultrasound neurostimulation with piezoelectric nanoparticles
压电纳米粒子超声神经刺激
- 批准号:
10312713 - 财政年份:2020
- 资助金额:
$ 23.15万 - 项目类别:
Super-Localization Ultrasound Imaging with Targeted Laser-activated Nanodetectors
使用靶向激光激活纳米探测器进行超定位超声成像
- 批准号:
9267468 - 财政年份:2016
- 资助金额:
$ 23.15万 - 项目类别:
Molecular Photoacoustic Imaging for the Detection of Sentinel Lymph Node Metastas
用于检测前哨淋巴结转移的分子光声成像
- 批准号:
8473052 - 财政年份:2012
- 资助金额:
$ 23.15万 - 项目类别:
Molecular Photoacoustic Imaging for the Detection of Sentinel Lymph Node Metastas
用于检测前哨淋巴结转移的分子光声成像
- 批准号:
8317207 - 财政年份:2012
- 资助金额:
$ 23.15万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 23.15万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 23.15万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 23.15万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 23.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 23.15万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 23.15万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 23.15万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 23.15万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 23.15万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 23.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




