Biological Insights from Genetic Investigation of ANthropometric Traits (GIANT) Across the Allelic Spectrum
跨等位基因谱的人体测量特征 (GIANT) 遗传研究的生物学见解
基本信息
- 批准号:9766263
- 负责人:
- 金额:$ 71.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-08 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAllelesBenchmarkingBiologicalBiological FactorsBiological ProcessBiologyBody mass indexCardiovascular DiseasesCessation of lifeChildhoodCodeCollectionComputer softwareComputing MethodologiesDataData SetDevelopmental ProcessDiabetes MellitusDiseaseEnvironmentEpidemicEpigenetic ProcessFrequenciesFundingFutureGenerationsGenesGeneticGenetic VariationGenetic screening methodGenetic studyGenotypeGoalsGrowthHaplotypesHeightHeritabilityHuman GeneticsIndividualInfrastructureInvestigationKnowledgeLightMalignant NeoplasmsMeasuresMedicalMeta-AnalysisMetabolicMethodsModelingObesityPathway interactionsPlant RootsPolygenic TraitsPredispositionPublic HealthRandomizedRegulatory ElementResistanceResourcesRouteSample SizeSamplingSignal TransductionSiteTestingTherapeutic InterventionUntranslated RNAVariantWaist-Hip RatioWorkbasecausal variantdesigneffective therapyexomegenetic approachgenome wide association studygenome-widegenomic datahuman diseaseimprovedinnovationinsightnovelnovel therapeuticsobesity geneticsobesity riskrare variantsuccesstraitwhole genome
项目摘要
For diseases without safe and long-term effective therapies, such as obesity, human genetics offers an
unbiased route to biological insights that may provide valuable new therapeutic hypotheses. Genome-wide
association studies (GWAS) have implicated both known and novel genes for many polygenic traits, including
obesity. However, moving from genetic discovery to biological insight requires overcoming some key hurdles.
Because associations from GWAS typically identify clusters of correlated noncoding variants, associated loci
typically do not pinpoint either specific regulatory elements or causal genes. In addition, little is known about
the function of most genes, so it is often difficult to recognize the biological implications of new discoveries.
Fortunately, there is a path forward – considering associated loci in combination can reveal shared biology and
causal genes not apparent from any individual association – but powerful computational methods and large
numbers of associated loci are needed for this approach to work. For height, a model polygenic trait with many
known loci, this approach highlights many relevant pathways and genes, both known and novel. Similar
insights have only just begun to emerge when applied to measures of obesity, where there are fewer known
loci and likely less well-annotated causal biology. The main goal of these genetic studies is to achieve a clearer
view of underlying biology, and progress has been more dramatic for height than for obesity. As such, the
current success with height shows the promise for a greatly expanded genetic discovery effort for obesity.
This proposal aims to fulfill the promise of human genetics to provide critical insights into the root biological
causes of obesity. It builds on the collaborative infrastructure we successfully created within the GIANT
consortium and have used to discover most of the common variants known to be associated with
anthropometric traits. The work will leverage newly feasible genetic approaches and unprecedented sample
sizes to study anthropometric measures of obesity (a major public health problem and unmet medical need)
and height (the classical model polygenic trait). To increase the number of genetic discoveries, which is vital to
recognizing underlying biology, the proposal encompasses the largest collection of genotyped samples yet
assembled (up to 2 million individuals from multiple ancestries), imputed to state-of-the-art reference panels.
Association analysis for anthropometric traits will also be performed in large whole genome and whole exome
sequence data sets (N>100,000), to discover rare variants that may have larger effects and more precisely
pinpoint causal genes/regulatory elements. Computational methods that integrate genetic, expression and
epigenetic data will be benchmarked on results from height, and then applied to recognize shared biology
across obesity-associated loci and across the allelic spectrum, providing insights into likely causal genes and
mechanisms. Finally, Mendelian randomization will be used to infer causal relationships between obesity and
circulating metabolites, to define metabolic consequences of obesity as well as new therapeutic opportunities.
对于没有安全和长期有效治疗方法的疾病,如肥胖症,人类遗传学提供了一个
无偏见的路线,生物学的见解,可能提供有价值的新的治疗假设。全基因
关联研究(GWAS)已经暗示了许多多基因性状的已知和新基因,包括
肥胖然而,从基因发现到生物学洞察需要克服一些关键障碍。
因为来自GWAS的关联通常识别相关的非编码变体簇,
通常不能精确定位特定的调控元件或致病基因。此外,人们对
大多数基因的功能,所以它往往是很难认识到新发现的生物学意义。
幸运的是,有一条前进的道路-考虑相关基因座的组合可以揭示共同的生物学,
因果基因不明显从任何个人协会-但强大的计算方法和大
这种方法的工作需要许多相关的基因座。对于身高,一个模型多基因性状与许多
在已知的基因座中,这种方法突出了许多相关的途径和基因,包括已知的和新的。类似
当应用于肥胖的测量时,见解才刚刚开始出现,
基因座和可能不太好注释的因果生物学。这些基因研究的主要目标是实现更清晰的
从基础生物学的角度来看,身高的进步比肥胖更引人注目。因此,
目前在身高方面的成功显示了肥胖症基因发现工作将大大扩展的前景。
这项提案旨在履行人类遗传学的承诺,为根生物学提供关键的见解。
肥胖的原因它建立在我们在GIANT中成功创建的协作基础设施之上
协会,并已用于发现已知与
人体测量特征这项工作将利用新的可行的遗传方法和前所未有的样本
研究肥胖的人体测量(一个主要的公共卫生问题和未满足的医疗需求)
和身高(经典模型多基因性状)。增加基因发现的数量,这对
认识到潜在的生物学,该提案包括迄今为止最大的基因型样本收集
收集(来自多个祖先的多达200万人),估算到最先进的参考面板。
还将在大型全基因组和全外显子组中进行人体测量性状的关联分析
序列数据集(N> 100,000),以发现可能具有更大影响的罕见变异,
查明致病基因/调控元件。整合遗传、表达和
表观遗传数据将以身高为基准,然后应用于识别共同的生物学特征。
跨肥胖相关基因座和跨等位基因谱,提供对可能的因果基因的见解,
机制等最后,将使用孟德尔随机化来推断肥胖和肥胖之间的因果关系。
循环代谢物,以确定肥胖症的代谢后果以及新的治疗机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOEL N HIRSCHHORN其他文献
JOEL N HIRSCHHORN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOEL N HIRSCHHORN', 18)}}的其他基金
Candidate Gene Studies of Obesity Guided by Whole Genome Association Data
全基因组关联数据指导的肥胖候选基因研究
- 批准号:
8004332 - 财政年份:2010
- 资助金额:
$ 71.51万 - 项目类别:
Genome-Wide Association Studies of Diabetic Nephropathy
糖尿病肾病的全基因组关联研究
- 批准号:
8117211 - 财政年份:2009
- 资助金额:
$ 71.51万 - 项目类别:
Genome-Wide Association Studies of Diabetic Nephropathy
糖尿病肾病的全基因组关联研究
- 批准号:
8009578 - 财政年份:2009
- 资助金额:
$ 71.51万 - 项目类别:
Genome-Wide Association Studies of Diabetic Nephropathy
糖尿病肾病的全基因组关联研究
- 批准号:
8306989 - 财政年份:2009
- 资助金额:
$ 71.51万 - 项目类别:
CANDIDATE GENE STUDIES OF OBESITY GUIDED BY WHOLE GENOME ASSOCIATION DATA
全基因组关联数据指导下的肥胖候选基因研究
- 批准号:
8911295 - 财政年份:2007
- 资助金额:
$ 71.51万 - 项目类别:
Biological Insights from Genetic Investigation of ANthropometric Traits (GIANT) Across the Allelic Spectrum
跨等位基因谱的人体测量特征 (GIANT) 遗传研究的生物学见解
- 批准号:
10226942 - 财政年份:2007
- 资助金额:
$ 71.51万 - 项目类别:
Candidate Gene Studies of Obesity Guided by Whole Genome Association Data
全基因组关联数据指导的肥胖候选基因研究
- 批准号:
7628614 - 财政年份:2007
- 资助金额:
$ 71.51万 - 项目类别:
Candidate Gene Studies of Obesity Guided by Whole Genome Association Data
全基因组关联数据指导的肥胖候选基因研究
- 批准号:
8122631 - 财政年份:2007
- 资助金额:
$ 71.51万 - 项目类别:
CANDIDATE GENE STUDIES OF OBESITY GUIDED BY WHOLE GENOME ASSOCIATION DATA
全基因组关联数据指导下的肥胖候选基因研究
- 批准号:
9123587 - 财政年份:2007
- 资助金额:
$ 71.51万 - 项目类别:
CANDIDATE GENE STUDIES OF OBESITY GUIDED BY WHOLE GENOME ASSOCIATION DATA
全基因组关联数据指导下的肥胖候选基因研究
- 批准号:
8721927 - 财政年份:2007
- 资助金额:
$ 71.51万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 71.51万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 71.51万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 71.51万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 71.51万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 71.51万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 71.51万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 71.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 71.51万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 71.51万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 71.51万 - 项目类别: