Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs

新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态

基本信息

项目摘要

Abstract: Smoking cessation decreases morbidity and mortality and is a cornerstone of cancer prevention. The ability to impact current and future vulnerability (e.g., high risk for a lapse) in real-time via engagement in self-regulatory activities (e.g., behavioral substitution, mindful attention) is considered an important pathway to quitting success. However, poor engagement represents a major barrier to maximizing the impact of self- regulatory activities. Hence, enhancing real-time, real-world engagement in evidence-based self-regulatory activities has the potential to improve the effectiveness of smoking cessation interventions. Just-In-Time Adaptive Interventions (JITAIs) delivered via mobile devices have been developed for preventing and treating addictions. JITAIs adapt over time to an individual’s changing status and are optimized to provide appropriate intervention strategies based on real time, real world context. Organizing frameworks on JITAIs emphasize minimizing disruptions to the daily lives and routines of the individual, by tailoring strategies not only to vulnerability, but also to receptivity (i.e., an individual’s ability and willingness to utilize a particular intervention). Although both vulnerability and receptivity are considered latent states that are dynamically and constantly changing based on the constellation and temporal dynamics of emotions, context, and other factors, no attempt has been made to systematically investigate the nature of these states, as well as how knowledge of these states can be used to optimize real-time engagement in self-regulatory activities. To close this gap, the proposed project will apply innovative computational approaches to one of the most extensive and racially/ethnically diverse collection of real time, real world data on health behavior change (smoking cessation). Intensive longitudinal self-reported and sensor data from 5 studies (3 completed and 2 ongoing) of ~1,500 smokers attempting to quit will be analyzed with advanced probabilistic latent variable models and machine learning to investigate how the temporal dynamics and interactions of emotions, self-regulatory capacity (SRC), context, and other factors can be used to detect (Aim 1) states of vulnerability to a lapse and (Aim 2) states of receptivity to engaging in self-regulatory activities. We will also investigate (Aim 3) how knowledge of these states can be used to optimize real-time engagement in self-regulatory activities by conducting a Micro-Randomized Trial (MRT) enrolling 150 smokers attempting to quit. Utilizing a mobile smoking cessation app, the MRT will randomize each individual multiple times per day to either (a) no intervention prompt; (b) a prompt recommending engagement in brief (low effort) strategies; or (c) a prompt recommending a more effortful practice of self-regulation strategies. The proposed research will be the first to yield a comprehensive conceptual, technical, and empirical foundation necessary to develop effective JITAIs based on dynamic models of vulnerability and receptivity.
摘要:戒烟可降低发病率和死亡率,是预防癌症的基石。 通过参与实时影响当前和未来的漏洞(例如,失误的高风险)的能力 自我调节活动(例如行为替代、正念注意力)被认为是重要途径 才能戒烟成功。然而,参与度低是最大化自我影响力的主要障碍。 监管活动。因此,加强实时、现实世界的基于证据的自我监管参与 活动有可能提高戒烟干预措施的有效性。准时制 通过移动设备提供的适应性干预措施 (JITAI) 已被开发用于预防和治疗 成瘾。 JITAI 会随着时间的推移适应个人不断变化的状态,并进行优化以提供适当的 基于实时、现实世界背景的干预策略。 JITAI 的组织框架强调 通过制定策略,最大限度地减少对个人日常生活和例行公事的干扰 脆弱性,而且还包括接受性(即个人利用特定的能力和意愿) 干涉)。尽管脆弱性和接受性都被认为是动态且变化的潜在状态 根据情绪、背景和其他因素的星座和时间动态不断变化, 尚未尝试系统地调查这些状态的性质,以及这些状态的知识如何 这些状态可用于优化自我监管活动的实时参与。为了缩小这一差距, 拟议的项目将把创新的计算方法应用于最广泛和最广泛的领域之一 种族/族裔多样化的实时、真实世界健康行为变化数据收集(吸烟 停止)。来自 5 项研究(3 项已完成,2 项正在进行)的密集纵向自我报告和传感器数据 将使用先进的概率潜变量模型对约 1,500 名试图戒烟的吸烟者进行分析 机器学习研究情绪的时间动态和相互作用、自我调节 能力(SRC)、背景和其他因素可用于检测(目标 1)易受故障影响的状态,并 (目标 2)参与自律活动的接受度。我们还将调查(目标 3)如何 对这些状态的了解可用于优化实时参与自律活动 进行了一项微型随机试验 (MRT),招募了 150 名试图戒烟的吸烟者。使用手机 戒烟应用程序中,MRT 每天会将每个人随机多次分为 (a) 否 干预提示; (b) 及时建议参与简短(省力)的战略;或 (c) 提示 建议采取更有效的自我监管策略实践。拟议的研究将是第一个 为开发有效的 JITAI 提供必要的全面概念、技术和经验基础 基于脆弱性和接受性的动态模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Inbal Billie Nahum-Shani其他文献

Sa1813 PROGNOSTIC SCORING SYSTEMS IDENTIFYING PATIENTS WITH ACUTE SEVERE ULCERATIVE COLITIS AT RISK FOR COLECTOMY BEFORE AND AFTER RESCUE INFLIXIMAB
  • DOI:
    10.1016/s0016-5085(23)02027-9
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Berinstein;Neelakanta A. Atkuri;Elliot Berinstein;Jessica L. Sheehan;Laura Johnson;Shirley Cohen-Mekelburg;Hui Jiang;Nicole Walkim;Kelley M. Kidwell;Inbal Billie Nahum-Shani;Robert J. Battat;Akbar K. Waljee;Peter D. Higgins
  • 通讯作者:
    Peter D. Higgins

Inbal Billie Nahum-Shani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Inbal Billie Nahum-Shani', 18)}}的其他基金

Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs Supplement
新颖地使用移动医疗数据来识别 JITAI 补充的脆弱性和接受度状态
  • 批准号:
    10564658
  • 财政年份:
    2022
  • 资助金额:
    $ 60.65万
  • 项目类别:
Admin-Core
管理核心
  • 批准号:
    10473748
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
Admin-Core
管理核心
  • 批准号:
    10640288
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
  • 批准号:
    10640292
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
Admin-Core
管理核心
  • 批准号:
    10267867
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
  • 批准号:
    10473761
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
  • 批准号:
    10267870
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
  • 批准号:
    10241985
  • 财政年份:
    2018
  • 资助金额:
    $ 60.65万
  • 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
  • 批准号:
    10090968
  • 财政年份:
    2018
  • 资助金额:
    $ 60.65万
  • 项目类别:
SMART Weight Loss Management
智能减肥管理
  • 批准号:
    9547033
  • 财政年份:
    2016
  • 资助金额:
    $ 60.65万
  • 项目类别:

相似国自然基金

多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
  • 批准号:
    2410889
  • 财政年份:
    2024
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
  • 批准号:
    MR/X032922/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
  • 批准号:
    DP240102605
  • 财政年份:
    2024
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
  • 批准号:
    2343506
  • 财政年份:
    2024
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
  • 批准号:
    24K16033
  • 财政年份:
    2024
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Continuing Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
  • 批准号:
    2312517
  • 财政年份:
    2023
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
  • 批准号:
    2345898
  • 财政年份:
    2023
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了