Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
基本信息
- 批准号:10241985
- 负责人:
- 金额:$ 61.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AphorismsAttentionBehavior TherapyBehavioralBoredomCause of DeathCigaretteCollectionComplexDataDepressed moodDevelopmentEffectivenessEmotionsEnrollmentFormulationFoundationsFutureHealth behavior changeHomeIndividualInformal Social ControlInterventionKnowledgeLearning SkillLocationMachine LearningMalignant NeoplasmsMeasuresModelingMorbidity - disease rateNaturePathway interactionsPatient Self-ReportPlayRandomizedRecommendationResearchRiskRoleSelf EfficacySmokerSmokingSmoking Cessation InterventionSocietiesTimeTobaccoTobacco useadaptive interventionaddictionbasebehavior changecancer preventioncopingcravingdisabilityethnic diversityevidence basefield theoryhandheld mobile devicehigh riskimprovedinnovationmHealthmindfulnessmortalitynovelpositive emotional statepreventracial and ethnicrandomized trialsensorskillssmoking cessationsuccesstheorieswillingness
项目摘要
Abstract: Smoking cessation decreases morbidity and mortality and is a cornerstone of cancer prevention.
The ability to impact current and future vulnerability (e.g., high risk for a lapse) in real-time via engagement in
self-regulatory activities (e.g., behavioral substitution, mindful attention) is considered an important pathway
to quitting success. However, poor engagement represents a major barrier to maximizing the impact of self-
regulatory activities. Hence, enhancing real-time, real-world engagement in evidence-based self-regulatory
activities has the potential to improve the effectiveness of smoking cessation interventions. Just-In-Time
Adaptive Interventions (JITAIs) delivered via mobile devices have been developed for preventing and treating
addictions. JITAIs adapt over time to an individual’s changing status and are optimized to provide appropriate
intervention strategies based on real time, real world context. Organizing frameworks on JITAIs emphasize
minimizing disruptions to the daily lives and routines of the individual, by tailoring strategies not only to
vulnerability, but also to receptivity (i.e., an individual’s ability and willingness to utilize a particular
intervention). Although both vulnerability and receptivity are considered latent states that are dynamically and
constantly changing based on the constellation and temporal dynamics of emotions, context, and other factors,
no attempt has been made to systematically investigate the nature of these states, as well as how knowledge of
these states can be used to optimize real-time engagement in self-regulatory activities. To close this gap, the
proposed project will apply innovative computational approaches to one of the most extensive and
racially/ethnically diverse collection of real time, real world data on health behavior change (smoking
cessation). Intensive longitudinal self-reported and sensor data from 5 studies (3 completed and 2 ongoing) of
~1,500 smokers attempting to quit will be analyzed with advanced probabilistic latent variable models and
machine learning to investigate how the temporal dynamics and interactions of emotions, self-regulatory
capacity (SRC), context, and other factors can be used to detect (Aim 1) states of vulnerability to a lapse and
(Aim 2) states of receptivity to engaging in self-regulatory activities. We will also investigate (Aim 3) how
knowledge of these states can be used to optimize real-time engagement in self-regulatory activities by
conducting a Micro-Randomized Trial (MRT) enrolling 150 smokers attempting to quit. Utilizing a mobile
smoking cessation app, the MRT will randomize each individual multiple times per day to either (a) no
intervention prompt; (b) a prompt recommending engagement in brief (low effort) strategies; or (c) a prompt
recommending a more effortful practice of self-regulation strategies. The proposed research will be the first to
yield a comprehensive conceptual, technical, and empirical foundation necessary to develop effective JITAIs
based on dynamic models of vulnerability and receptivity.
翻译后摘要:戒烟降低发病率和死亡率,是癌症预防的基石。
影响当前和未来脆弱性的能力(例如,高风险的失误)通过参与实时
自我监管活动(例如,行为替代,注意力)被认为是一个重要的途径
放弃成功然而,参与度差是最大限度地发挥自我影响的主要障碍。
监管活动。因此,加强实时,现实世界的参与,以证据为基础的自我监管,
活动有可能提高戒烟干预措施的有效性。Just-In-Time
通过移动的设备提供的适应性干预(JITAI)已被开发用于预防和治疗
上瘾JITAI随着时间的推移适应个人不断变化的状态,并进行优化,以提供适当的
基于真实的时间、真实的世界背景的干预策略。JITAI的组织框架强调
最大限度地减少对个人日常生活和惯例的干扰,通过量身定制的战略,不仅
脆弱性,但也容易接受(即,一个人的能力和意愿,利用特定的
干预)。虽然脆弱性和接受性都被认为是动态的潜在状态,
根据情绪、环境和其他因素的星座和时间动态不断变化,
没有试图系统地调查这些国家的性质,以及如何了解这些国家的情况。
这些状态可用于优化自律活动的实时参与。为了缩小这一差距,
拟议的项目将采用创新的计算方法,以最广泛的,
收集关于健康行为变化(吸烟)的真实的时间、真实的世界数据的种族/民族多样性
停止)。来自5项研究(3项已完成,2项正在进行)的密集纵向自我报告和探头数据,
约1,500名试图戒烟的吸烟者将使用先进的概率潜变量模型进行分析,
机器学习研究情绪的时间动态和相互作用,自我调节
容量(SRC)、上下文和其他因素可用于检测(目标1)失效的脆弱性状态,
(Aim(2)参与自我调节活动的接受状态。我们还将研究(目标3)如何
这些状态的知识可以用于优化自我调节活动的实时参与,
进行了一项微型随机试验(MRT),招募了150名试图戒烟的吸烟者。利用移动的
戒烟应用程序,MRT将每天多次随机分配每个人(a)不
干预提示;(B)建议参与简短(低努力)策略的提示;或(C)提示
建议采取更有效的自我调节策略。这项研究将是第一个
为开发有效的JITAI提供全面的概念、技术和经验基础
基于脆弱性和接受性的动态模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inbal Billie Nahum-Shani其他文献
Sa1813 PROGNOSTIC SCORING SYSTEMS IDENTIFYING PATIENTS WITH ACUTE SEVERE ULCERATIVE COLITIS AT RISK FOR COLECTOMY BEFORE AND AFTER RESCUE INFLIXIMAB
- DOI:
10.1016/s0016-5085(23)02027-9 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Jeffrey Berinstein;Neelakanta A. Atkuri;Elliot Berinstein;Jessica L. Sheehan;Laura Johnson;Shirley Cohen-Mekelburg;Hui Jiang;Nicole Walkim;Kelley M. Kidwell;Inbal Billie Nahum-Shani;Robert J. Battat;Akbar K. Waljee;Peter D. Higgins - 通讯作者:
Peter D. Higgins
Inbal Billie Nahum-Shani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inbal Billie Nahum-Shani', 18)}}的其他基金
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs Supplement
新颖地使用移动医疗数据来识别 JITAI 补充的脆弱性和接受度状态
- 批准号:
10564658 - 财政年份:2022
- 资助金额:
$ 61.41万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10640292 - 财政年份:2021
- 资助金额:
$ 61.41万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10473761 - 财政年份:2021
- 资助金额:
$ 61.41万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10267870 - 财政年份:2021
- 资助金额:
$ 61.41万 - 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
- 批准号:
9768419 - 财政年份:2018
- 资助金额:
$ 61.41万 - 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
- 批准号:
10090968 - 财政年份:2018
- 资助金额:
$ 61.41万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 61.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 61.41万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 61.41万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 61.41万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 61.41万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 61.41万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 61.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Attention機構に基づく異種集合マッチング方式の分析と新方式の提案
基于注意力机制的异构集合匹配方法分析及新方法的提出
- 批准号:
23K11218 - 财政年份:2023
- 资助金额:
$ 61.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of instruction using focus of attention on performance of chest compressions.
使用注意力集中的教学对胸外按压表现的影响。
- 批准号:
23K09887 - 财政年份:2023
- 资助金额:
$ 61.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assessing the Influence of SDGs Formulation on Managers' Perceptions and CSR Activities: An Attention-based View
评估可持续发展目标制定对管理者认知和企业社会责任活动的影响:基于注意力的观点
- 批准号:
23K01515 - 财政年份:2023
- 资助金额:
$ 61.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)