The influence of axonal ER on retrograde synapse loss following axon damage
轴突 ER 对轴突损伤后逆行突触损失的影响
基本信息
- 批准号:9894123
- 负责人:
- 金额:$ 41.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP2A2AcuteAffectAminesAxonAxotomyCa(2+)-Transporting ATPaseCalciumCalcium ChannelCalcium OscillationsCalcium SignalingCell DeathCommunicationCorticospinal TractsCytosolDataDendritesDendritic SpinesDevelopmentDistalEndoplasmic ReticulumEventFoundationsFutureGene Expression ProfilingGenesGenetic TranscriptionGlutamatesGoalsHeat shock proteinsHippocampus (Brain)HumanImageIn VitroInhibitory SynapseInjuryInvestigationKnowledgeLeadMeasuresMediatingMethodsMicrofluidic MicrochipsMicrofluidicsMicrotubulesModelingMolecularMolecular TargetMusNervous System TraumaNeuronal InjuryNeuronsPartner in relationshipPharmacologyPresynaptic TerminalsProteinsPsyche structurePyramidal CellsPyramidal TractsRattusReporterResearchRoleSignal PathwaySignal TransductionSiteSodium-Calcium ExchangerSpecificityStainsStrokeSurgical incisionsSynapsesSynaptic VesiclesTestingTherapeuticTimeTraumatic Brain InjuryWorkaxon injurybasebiological adaptation to stressdensitydifferential expressionendoplasmic reticulum stresshippocampal pyramidal neuronhuman stem cellsimmunocytochemistryimprovedin vivonerve injurynervous system disorderneuronal cell bodynovelpostsynapticpreventregenerativeresponse to injurystroke patienttoolvesicular release
项目摘要
Axon injury is an early event of neurotrauma that leads to retrograde cellular changes, including somatic ER
stress, synapse loss, hyper-excitability, and even cell death. Foundational work remains needed to understand
how axon-to-soma injury signals propagate to effect these profound retrograde changes in long projection
pyramidal cells. Understanding this signaling is critical for the future development of neuroprotective
approaches. Axon injury causes massive influx of calcium into the cytosol to initiate axon-to-soma signaling,
leading to transcription-dependent retrograde synapse loss and hyperexcitability. Evidence suggests either an
endoplasmic reticulum (ER)-dependent calcium wave or calcium-primed microtubule-based transport mediates
this long-range axon-to-soma signaling. A vast ER network extends throughout the neuron from distal axon
terminals to dendritic spines, influencing the availability of calcium, but the extent of axonal ER involvement in
axon injury-induced synapse loss and hyper-excitability remains unknown. Further, while rat injury models are
a mainstay of this research, it remains unclear how human glutamatergic neurons, with their diminished
regenerative capacity, differ in their injury signaling mechanisms. Experimentally tractable multi-compartment,
microfluidic chambers enable manipulation of axons independently from somata and dendrites, providing an
important tool to investigate axon-to-soma communication in both murine and human stem cell-derived neurons.
We found that hippocampal pyramidal neurons subjected to distal axotomy in our microfluidic chambers undergo
somatic ER stress, retrograde synapse loss, and hyper-excitability. Reducing calcium influx locally at the site of
injury and blocking transcription prevents axotomy-induced dendritic spine loss; thus, calcium signaling and
rapid transcription mediate synapse loss following axon injury. Our long-term goal is to identify key molecular
players and their timing of action that cause retrograde synapse loss and hyper-excitability following axon injury.
Aim 1 will determine the influence of axonal ER on axotomy-induced somatic ER stress in both rat and human
glutamatergic neurons. Aim 2 will examine the influence of axonal ER signaling on axotomy-induced synapse
loss and hyper-excitability. Together, this study provides a critical first step in defining the role of ER during
axon-to-soma injury signaling in pyramidal cells. Further, this project may lead to the novel identification of
therapeutics during early stages of neuron damage and will likely have broader implications for other
neurological disorders where both ER stress and axon damage are prevalent.
轴突损伤是神经创伤的早期事件,导致逆行性细胞变化,包括体细胞ER
压力,突触丧失,过度兴奋,甚至细胞死亡。基础工作仍然需要了解
轴突-索马损伤信号如何传播以影响长投射中这些深刻的逆行变化
锥体细胞了解这种信号传导对于神经保护性药物的未来发展至关重要。
接近。轴突损伤导致大量钙流入胞质溶胶以启动轴突至索马信号传导,
导致转录依赖性逆行突触丧失和过度兴奋。有证据表明,
内质网(ER)依赖性钙波或钙启动的微管转运介导
这种从轴突到索马的长距离信号传递。一个巨大的内质网从远端轴突延伸到整个神经元
终末树突棘,影响钙的可用性,但轴突ER参与的程度,
轴突损伤诱导的突触丧失和过度兴奋性仍然未知。此外,虽然大鼠损伤模型是
作为这项研究的支柱,目前还不清楚人类的多巴胺能神经元,
再生能力,不同的损伤信号传导机制。实验上易于处理的多隔间,
微流体腔室能够独立于胞体和树突操纵轴突,
研究鼠和人干细胞衍生神经元中轴突至索马通讯的重要工具。
我们发现,在我们的微流体室中,海马锥体神经元受到远端轴突切断,
体细胞ER应激、逆行性突触丢失和过度兴奋。减少局部的钙内流,
损伤和阻断转录防止轴突切断诱导的树突棘丢失;因此,钙信号传导和
快速转录介导轴突损伤后的突触丢失。我们的长期目标是找出
运动员和他们的行动时间,导致逆行突触损失和过度兴奋后轴突损伤。
目的1研究轴突雌激素受体对大鼠和人类轴突切断诱导的体细胞雌激素受体应激的影响
神经元。目的2研究轴突ER信号对轴突切断诱导的突触的影响
失落和过度兴奋总之,这项研究提供了一个关键的第一步,在确定ER的作用,
锥体细胞中轴突至索马损伤信号传导。此外,该项目可能导致新的识别
在神经元损伤的早期阶段的治疗,并可能有更广泛的影响,
其中ER应激和轴突损伤均普遍存在的神经系统疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNE MARION TAYLOR其他文献
ANNE MARION TAYLOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNE MARION TAYLOR', 18)}}的其他基金
Tau mislocalization assay to screen AD therapeutics using compartmentalized chips
使用区室芯片筛选 AD 疗法的 Tau 错误定位测定
- 批准号:
10384739 - 财政年份:2022
- 资助金额:
$ 41.34万 - 项目类别:
Tau mislocalization assay to screen AD therapeutics using compartmentalized chips
使用区室芯片筛选 AD 疗法的 Tau 错误定位测定
- 批准号:
10561610 - 财政年份:2022
- 资助金额:
$ 41.34万 - 项目类别:
A user-friendly scalable microfluidic platform for enhanced neuron-cell culture
用于增强神经元细胞培养的用户友好的可扩展微流体平台
- 批准号:
8524799 - 财政年份:2013
- 资助金额:
$ 41.34万 - 项目类别:
A user-friendly scalable microfluidic platform for enhanced neuron-cell culture
用于增强神经元细胞培养的用户友好的可扩展微流体平台
- 批准号:
9568138 - 财政年份:2013
- 资助金额:
$ 41.34万 - 项目类别:
A user-friendly scalable microfluidic platform for enhanced neuron-cell culture
用于增强神经元细胞培养的用户友好的可扩展微流体平台
- 批准号:
8660344 - 财政年份:2013
- 资助金额:
$ 41.34万 - 项目类别:
Novel Chamber for Axonal Glutamate Signal Transduction
轴突谷氨酸信号转导的新型室
- 批准号:
6897929 - 财政年份:2004
- 资助金额:
$ 41.34万 - 项目类别:
Novel Chamber for Axonal Glutamate Signal Transduction
轴突谷氨酸信号转导的新型室
- 批准号:
6739385 - 财政年份:2004
- 资助金额:
$ 41.34万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 41.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 41.34万 - 项目类别:
Standard Grant