Augmented Reality Platform for Deep Brain Stimulation
用于深部脑刺激的增强现实平台
基本信息
- 批准号:9893938
- 负责人:
- 金额:$ 46.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnatomyAtlasesAugmented RealityAxonBasal GangliaBiological ModelsBiomedical EngineeringClinicalCollectionComplexComputer softwareComputersCoupledDataData SetDeep Brain StimulationDevelopmentDiffusion Magnetic Resonance ImagingEducational process of instructingElectrodesEnvironmentFocus GroupsFutureGoalsGuidelinesHumanInvestigationKnowledgeLinkLiteratureMagnetic Resonance ImagingMedial lemniscusMethodologyMindModelingNeuroanatomyNeurosurgeonOperative Surgical ProceduresOutcomeParkinson DiseasePathway interactionsPatient imagingPatientsPositioning AttributePyramidal TractsQuality of lifeResearchResearch Project GrantsSoftware ToolsSymptomsSystemTechniquesTechnologyTestingThree-Dimensional ImagingTrainingTranslatingUnited States National Institutes of HealthVisualization softwareWorkanatomical tracingclinical practiceeducation researchhologramholographic visualization improvedinsightmotor symptomnext generationnovelrapid growthreconstructionsimulationtargeted treatmenttooltractographyvirtual
项目摘要
PROJECT SUMMARY
Subthalamic deep brain stimulation (DBS) for the treatment of Parkinson's disease (PD) can be highly
effective at improving motor symptoms and enhancing the patient's quality of life. However, the specific details
of the anatomical target(s) for therapeutic stimulation remain unresolved. Recent DBS surgical targeting
hypotheses have evolved to consider that direct stimulation of specific axonal pathways within the subthalamic
region may be linked to the control of specific symptoms. Unfortunately, 3D anatomical characterization of the
wide array of different axonal pathways in the human subthalamic region is very limited and techniques to
visualize the complex neuroanatomy currently focus on 2D computer screens. These limitations hinder our
ability to create accurate models and interpret the effects of DBS. Therefore, we propose that significant need
exists for an anatomically driven model of subthalamic axonal pathways that can be interactively visualized
with holographic 3D imaging and coupled to patient-specific DBS simulations.
The goal of this Bioengineering Research Grant (PAR-16-242) is to create next generation visualization
tools and surgical targeting models for clinical DBS. The first step of this study will rely on direct input from a
collection of world experts in basal ganglia neuroanatomy to help us build a virtual 3D atlas model of 8 different
axonal pathways in the subthalamic region. This development will occur within the HoloLens augmented
reality (AR) environment, thereby enabling face-to-face discussion among the anatomy experts while
visualizing the model hologram and its interactive adjustment. The second step of this study will evaluate the
ability of various tractography algorithms to recreate the pathways described by the anatomy experts. We
hypothesize that tractography will fail to accurately capture the anatomical trajectory of most subthalamic
axonal pathways without extensive modeling constraints. Results from this analysis will have important
implications for the rapid growth of tractography in DBS research, as well as clinical practice. Finally, we will
translate our subthalamic axonal pathway model system into an interactive HoloLens AR application that works
in concert with patient-specific MRI datasets and DBS pathway-activation modeling. We propose that such a
tool will be especially useful for DBS surgical education and research investigation.
项目总结
丘脑深部电刺激(DBS)治疗帕金森病(PD)
有效地改善运动症状,提高患者的生活质量。不过,具体细节是
治疗刺激的解剖靶点(S)的问题仍未解决。星展银行最近的手术靶向
假说已经进化到认为直接刺激丘脑底核内的特定轴突通路
区域可能与特定症状的控制有关。不幸的是,关节的3D解剖特征
人类丘脑底区不同轴突通路的广泛排列是非常有限的,并且技术
想象一下目前集中在2D计算机屏幕上的复杂神经解剖学。这些限制阻碍了我们的
能够创建准确的模型并解释星展银行的效果。因此,我们提出这一重大需求
存在一个可以交互可视化的丘脑下部轴突路径的解剖驱动模型
具有全息3D成像,并与患者特定的DBS模拟相结合。
这项生物工程研究基金(PAR-16-242)的目标是创造下一代可视化
临床DBS的工具和外科靶向模型。这项研究的第一步将依赖于来自
汇集世界各地的基底节神经解剖学专家,帮助我们构建8个不同的虚拟3D图谱模型
丘脑下部的轴突通路。这一发展将发生在全息透镜增强
现实(AR)环境,从而使解剖专家能够面对面地讨论,同时
模型全息图的可视化及其交互调整。这项研究的第二步将评估
不同的纤维束成像算法重建解剖专家描述的路径的能力。我们
假设脑束造影术不能准确地捕捉大多数丘脑下部的解剖轨迹
没有大量建模约束的轴突路径。这一分析的结果将具有重要的
对DBS研究和临床实践中快速发展的纤维束造影术的影响。最后,我们会
将我们的丘脑下部轴突通路模型系统转换为可工作的交互式HoloLens AR应用程序
与患者特定的MRI数据集和DBS途径激活建模相结合。我们建议这样一个
该工具将特别适用于星展银行的外科教学和研究调查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Griswold其他文献
Mark Griswold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Griswold', 18)}}的其他基金
Augmented Reality Platform for Deep Brain Stimulation
用于深部脑刺激的增强现实平台
- 批准号:
10132413 - 财政年份:2018
- 资助金额:
$ 46.2万 - 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
- 批准号:
8696434 - 财政年份:2014
- 资助金额:
$ 46.2万 - 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
- 批准号:
8820913 - 财政年份:2014
- 资助金额:
$ 46.2万 - 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
- 批准号:
9015440 - 财政年份:2014
- 资助金额:
$ 46.2万 - 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
- 批准号:
9242647 - 财政年份:2014
- 资助金额:
$ 46.2万 - 项目类别:
Magnetic Resonance Fingerprinting (MRF) for Improved High Field MR
用于改进高场 MR 的磁共振指纹识别 (MRF)
- 批准号:
9107869 - 财政年份:2013
- 资助金额:
$ 46.2万 - 项目类别:
Magnetic Resonance Fingerprinting (MRF) for Improved High Field MR
用于改进高场 MR 的磁共振指纹识别 (MRF)
- 批准号:
8721411 - 财政年份:2013
- 资助金额:
$ 46.2万 - 项目类别:
Magnetic Resonance Fingerprinting (MRF) for Improved High Field MR
用于改进高场 MR 的磁共振指纹识别 (MRF)
- 批准号:
8557778 - 财政年份:2013
- 资助金额:
$ 46.2万 - 项目类别:
Improved cardiac and vascular MRI using parallel imaging and compressed sensing
使用并行成像和压缩感知改进心脏和血管 MRI
- 批准号:
8586534 - 财政年份:2010
- 资助金额:
$ 46.2万 - 项目类别:
Improved cardiac and vascular MRI using parallel imaging and compressed sensing
使用并行成像和压缩感知改进心脏和血管 MRI
- 批准号:
8197605 - 财政年份:2010
- 资助金额:
$ 46.2万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Continuing Grant














{{item.name}}会员




