Improved cardiac and vascular MRI using parallel imaging and compressed sensing

使用并行成像和压缩感知改进心脏和血管 MRI

基本信息

  • 批准号:
    8197605
  • 负责人:
  • 金额:
    $ 64.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-15 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective of this proposal is to produce a new level of gains in imaging speed and SNR for cardiac and vascular imaging by combining novel concepts of non-Cartesian parallel imaging techniques with the newly emerging compressed sampling theory. Compressed sensing promises to revolutionize the field of MRI by breaking the traditional link between imaging time and SNR. Here we will exploit these concepts to develop a set of completely new imaging strategies with dramatic increases in SNR and imaging speed. We specifically address computational limitations by developing an open source software distribution for high-end graphical processing units. These processors promise to dramatically reduce computational time across the board in medical imaging. Ultimately we believe that these technologies, when viewed as a whole, will result in a novel class of methods for cardiac and vascular diagnosis which will provide an increase in image quality, SNR and speed in MRI, perhaps unparalleled in the evolution of MRI, resulting in dramatically improved imaging of MR angiography, cardiac function and cardiac perfusion. Our specific aims are to: 1) develop and evaluate improved methods to acquire, and reconstruct multislice non-Cartesian parallel imaging methods for 2D MRI applications 2) develop and evaluate robust combined non-Cartesian parallel imaging and compressed sensing methods 3) develop and evaluate improved computational methods based on graphical processing units (GPUs) for the calculation of non-Cartesian parallel imaging, CG-HYPR and combined methods to achieve clinically acceptable reconstruction times and 4) validate parallel CG-HYPR methods for the evaluation of cardiovascular disease as a means to shorten total exam time and increase image quality.
描述(由申请人提供):本提案的目的是通过将非笛卡尔并行成像技术的新概念与新出现的压缩采样理论相结合,将心脏和血管成像的成像速度和信噪比提高到新的水平。压缩传感有望打破成像时间和信噪比之间的传统联系,从而彻底改变 MRI 领域。在这里,我们将利用这些概念来开发一套全新的成像策略,显着提高信噪比和成像速度。我们通过为高端图形处理单元开发开源软件发行版来专门解决计算限制。这些处理器有望大幅减少医学成像领域的计算时间。最终,我们相信,从整体上看,这些技术将带来一类新型的心脏和血管诊断方法,提高 MRI 的图像质量、信噪比和速度,这在 MRI 的发展中可能是无与伦比的,从而显着改善 MR 血管造影、心脏功能和心脏灌注的成像。我们的具体目标是: 1) 开发和评估改进的方法来获取和重建用于 2D MRI 应用的多层非笛卡尔并行成像方法 2) 开发和评估稳健的组合非笛卡尔并行成像和压缩感知方法 3) 开发和评估基于图形处理单元 (GPU) 的改进计算方法,用于计算非笛卡尔并行成像、CG-HYPR 和 结合方法来实现临床可接受的重建时间,4) 验证并行 CG-HYPR 方法用于评估心血管疾病,作为缩短总检查时间和提高图像质量的手段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Griswold其他文献

Mark Griswold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Griswold', 18)}}的其他基金

Augmented Reality Platform for Deep Brain Stimulation
用于深部脑刺激的增强现实平台
  • 批准号:
    10132413
  • 财政年份:
    2018
  • 资助金额:
    $ 64.56万
  • 项目类别:
Augmented Reality Platform for Deep Brain Stimulation
用于深部脑刺激的增强现实平台
  • 批准号:
    9893938
  • 财政年份:
    2018
  • 资助金额:
    $ 64.56万
  • 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
  • 批准号:
    8696434
  • 财政年份:
    2014
  • 资助金额:
    $ 64.56万
  • 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
  • 批准号:
    8820913
  • 财政年份:
    2014
  • 资助金额:
    $ 64.56万
  • 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
  • 批准号:
    9015440
  • 财政年份:
    2014
  • 资助金额:
    $ 64.56万
  • 项目类别:
Optimization of MR Fingerprinting (MRF) for Quantitative MRI
定量 MRI 的 MR 指纹 (MRF) 优化
  • 批准号:
    9242647
  • 财政年份:
    2014
  • 资助金额:
    $ 64.56万
  • 项目类别:
Magnetic Resonance Fingerprinting (MRF) for Improved High Field MR
用于改进高场 MR 的磁共振指纹识别 (MRF)
  • 批准号:
    9107869
  • 财政年份:
    2013
  • 资助金额:
    $ 64.56万
  • 项目类别:
Magnetic Resonance Fingerprinting (MRF) for Improved High Field MR
用于改进高场 MR 的磁共振指纹识别 (MRF)
  • 批准号:
    8721411
  • 财政年份:
    2013
  • 资助金额:
    $ 64.56万
  • 项目类别:
Magnetic Resonance Fingerprinting (MRF) for Improved High Field MR
用于改进高场 MR 的磁共振指纹识别 (MRF)
  • 批准号:
    8557778
  • 财政年份:
    2013
  • 资助金额:
    $ 64.56万
  • 项目类别:
Improved cardiac and vascular MRI using parallel imaging and compressed sensing
使用并行成像和压缩感知改进心脏和血管 MRI
  • 批准号:
    8586534
  • 财政年份:
    2010
  • 资助金额:
    $ 64.56万
  • 项目类别:

相似海外基金

SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Cooperative Agreement
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Operating Grants
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了