Pathway maps of platelet phenotype and function
血小板表型和功能的通路图
基本信息
- 批准号:9895857
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAffectAgonistAlpha GranuleAtherosclerosisBiochemicalBiologicalBlood CellsBlood PlateletsCardiovascular DiseasesCause of DeathCell modelCell-Cell AdhesionCellsChronic DiseaseCoagulation ProcessComplementComplexCuesCytokine ReceptorsCytoplasmic GranulesData AnalysesDiseaseEndotheliumEventFilopodiaGlycoproteinsGoalsHemorrhageHemostatic AgentsHemostatic functionImageInflammationInflammatoryInflammatory ResponseInjuryIntegrinsKnowledgeLeukocytesMapsMeasurementMeasuresMediatingMediator of activation proteinMethodologyMethodsModelingMolecularMorbidity - disease rateOutputP-SelectinPathogenesisPathway interactionsPhenotypePhospholipasePhosphorylationPhysiologicalPlatelet ActivationProcessProteinsProteomicsPublic HealthPurinoceptorReceptor SignalingRegulationRoleSignal PathwaySignal TransductionSiteSpecific qualifier valueSystemSystems BiologyTestingThrombosisWorkadhesion receptorbasedisabilityextracellularimprovedin vivomortalitynovelplatelet functionplatelet phenotypepreventprogramsreceptorrelease factorresponsetooltraffickingvascular inflammation
项目摘要
PROJECT SUMMARY
As the primary cellular mediators of hemostasis, platelets are optimized to limit bleeding through rapid
adhesion, secretion and aggregation responses at sites of endothelial injury. Platelets also adhere to
dysfunctional endothelium, where they secrete proinflammatory molecules and form aggregates with
leukocytes to progress vascular inflammation in a manner relevant to the pathogenesis of chronic diseases,
including atherosclerosis. Ongoing efforts aiming to understand and target platelet activities specific to disease
have characterized a spectrum of platelet functional phenotypes associated with inflammatory, thrombotic and
other conditions. Despite the identification of key molecular alterations that highlight differences between these
phenotypes, it remains unclear how different platelet phenotypes develop, how they should be defined, and,
ultimately, how they should be targeted. We hypothesize that platelet hemostatic, inflammatory and other
phenotypes are determined by the systematic activation of intracellular signaling pathways and effectors that
result in specific platelet functional outputs in response to physiological context. We aim to systematically
define intracellular signaling events that progress platelet adhesion (Aim 1), secretion (Aim 2) and aggregation
(Aim 3) in hemostatic programs and to determine how these responses mechanistically differ in the context of
vascular inflammation. We will engage these studies through the use of a high-throughput, proteomics-based
workflow that measures and maps intracellular signaling events and pathways underlying platelet function in
specific experimental and physiological contexts. We now use this set of proteomics, computational and cell
biological tools to build pathway maps intracellular signaling relations in platelet activation programs. In this
proposal, we use this first-in-class pathway mapping methodology together with other physiological and
systems biology tools to address how platelet signaling programs specify platelet phenotypes favoring
hemostatic and inflammatory responses. Ultimately, this work will generate knowledge as well as a conceptual
means to define and understand systems level mechanisms of platelet regulation in hemostasis as well as in
inflammation and the manifestation of disease.
项目摘要
作为止血的主要细胞介质,血小板被优化以限制通过快速出血
内皮损伤部位的粘附,分泌和聚集反应。血小板也遵守
功能失调的内皮,它们分泌促炎分子并与
白细胞以与慢性疾病的发病机理相关的方式进行血管炎症,
包括动脉粥样硬化。旨在理解和针对特定于疾病的血小板活动的持续努力
已经表征了与炎症,血栓形成和
其他条件。尽管鉴定了关键分子改变,这些变化突出了这些之间的差异
表型,尚不清楚如何形成不同的血小板表型,应如何定义它们以及,以及
最终,应如何将它们作为目标。我们假设血小板止血,炎症和其他
表型是由细胞内信号通路和效应子的系统激活确定的
响应生理环境,导致特定的血小板功能输出。我们的目标是系统地
定义会进展血小板粘附的细胞内信号传导事件(AIM 1),分泌(AIM 2)和聚集
(目标3)在止血程序中,并确定这些反应在机械上如何在机械上差异
血管炎症。我们将通过使用高通量,基于蛋白质组学的研究来参与这些研究
测量和绘制细胞内信号传导事件和途径血小板功能的工作流程
特定的实验和生理环境。现在,我们使用这组蛋白质组学,计算和细胞
构建途径的生物工具映射血小板激活程序中的细胞内信号传导关系。在这个
提案,我们将此一流的途径映射方法以及其他生理和
系统生物学工具以解决血小板信号程序如何指定血小板表型有利的
止血和炎症反应。最终,这项工作将产生知识和概念
定义和理解止血和血小板调节的系统水平机制以及
炎症和疾病的表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH E ASLAN其他文献
JOSEPH E ASLAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH E ASLAN', 18)}}的其他基金
相似国自然基金
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别: