Mechanical Regulation of Vascular Growth and Remodeling
血管生长和重塑的机械调节
基本信息
- 批准号:9894763
- 负责人:
- 金额:$ 50.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-26 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAngiographyAnisotropyAreaAutopsyBiocompatible MaterialsBiological ModelsBiophysicsBlood VesselsBone RegenerationBone TissueBone platesComplexComputer ModelsComputer SimulationDataDefectEnvironmentExtracellular MatrixFiberFibrinGene Expression ProfilingGoalsGrowthHealthHistologyHydrogelsIn VitroIndividualInvestigationKineticsLengthLinkLiquid substanceMapsMeasuresMechanicsMineralsModelingMolecularMonitorMusculoskeletalMusculoskeletal SystemNatural regenerationNatureNormal tissue morphologyOrganOsteogenesisOutcomeOutcome MeasurePeripheralPhaseProcessPropertyRegenerative responseRegulationRehabilitation therapyResearch PersonnelRoleSpecimenStructureSystemTelemetryTestingTimeTissuesVascularizationangiogenesisbasebonebone healingcardiac tissue engineeringcomputer frameworkconfocal imagingdensitydesignengineering designexperienceexperimental studyhealingimplantable deviceimprovedin silicoin vitro Modelin vivoinsightinterfacialknowledge baselong bonemechanical forcemechanical loadmechanical propertiesmineralizationmorphometrymultidisciplinaryneovascularpost-traumapreconditioningprogramspublic health relevanceregenerativerepairedresponsescaffoldsensorsimulationthree-dimensional modelingtissue regeneration
项目摘要
DESCRIPTION (provided by applicant): Tissue vascularization is one of the most critical components of the natural or assisted regenerative response. Typically, such areas of regeneration are characterized by the presence of nascent vascular structures moving across an interface of normal tissue to healing areas of likely different mechanical properties. Though the molecular and cellular nature of such angiogenic processes are well investigated, not much is known about the mechanical forces that influence the vasculature. It is well established, especially in the musculoskeletal system, that an effective and early vascularization response is central to functional regeneration, a delay or disruption of which can be deleterious to the regenerative process. Our early studies have shown that timing of the mechanical loading is equally important in healing bone tissue and its vascularity. It is thus clear that the mechanical environment exquisitely regulates the vascular networks. 3D constructs examined in tensile loading and luminal fluid shear studies form the bulk of our knowledge base on the interactions of microvessels with their microenvironment. In vivo, especially in musculoskeletal tissue, compression and shear - both bulk and interfacial - are the predominant modes of loading. We believe that external mechanical loading will influence the growth and remodeling of microvasculature by virtue of the direct compressive loads as well as by shear at the interface of the mechanically loaded and unloaded tissue. This proposal examines these questions first in an in vitro model, which is a simplistic recapitulation of the in vivo loading scenario. These studies will inform an in vivo loading model of microvascular growth and mineralization where in addition to the external forces, mineralization induced change in local stiffness is likely to playa role. In parallel, in silico studies, based on an already well-established computational framework for modeling microvascular growth, will be modified to reflect the needs of the current approach. The validated computational model will then allow examination of these mechanical interactions with vascular growth and remodeling in greater detail and more importantly establish a predictive framework based on this relationship that may ultimately guide post-traumatic rehabilitation programs or even the design of engineered vascularized scaffolds.
描述(由申请人提供):组织血管化是自然或辅助再生反应的最关键组成部分之一。通常,这种再生区域的特征在于存在新生血管结构,其穿过正常组织的界面移动到可能具有不同机械特性的愈合区域。虽然这种血管生成过程的分子和细胞性质得到了很好的研究,但对影响脉管系统的机械力知之甚少。已经充分确定,特别是在肌肉骨骼系统中,有效和早期的血管化反应是功能性再生的核心,其延迟或中断可能对再生过程有害。我们早期的研究表明,机械负荷的时机在愈合骨组织和其血管分布方面同样重要。因此,很明显,机械环境精细地调节血管网络。在拉伸载荷和管腔流体剪切研究中检查的3D结构形成了我们关于微血管与其微环境相互作用的大部分知识基础。在体内,特别是在肌肉骨骼组织中,压缩和剪切-体积和界面-是主要的加载模式。我们认为,外部机械负荷将影响微血管的生长和重塑的直接压缩负荷,以及通过剪切在界面处的机械加载和卸载组织。该建议首先在体外模型中检查这些问题,该模型是体内加载情况的简单概括。这些研究将为微血管生长和矿化的体内负荷模型提供信息,其中除了外力外,矿化诱导的局部刚度变化可能起作用。与此同时,基于已经建立的微血管生长建模计算框架的计算机模拟研究将进行修改,以反映当前方法的需求。经过验证的计算模型将允许更详细地检查这些与血管生长和重塑的机械相互作用,更重要的是,基于这种关系建立一个预测框架,最终可以指导创伤后康复计划,甚至设计工程化血管化支架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT E GULDBERG其他文献
ROBERT E GULDBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT E GULDBERG', 18)}}的其他基金
Immunoengineering Strategies for Musculoskeletal Trauma
肌肉骨骼创伤的免疫工程策略
- 批准号:
9974169 - 财政年份:2020
- 资助金额:
$ 50.43万 - 项目类别:
Immunoengineering Strategies for Musculoskeletal Trauma
肌肉骨骼创伤的免疫工程策略
- 批准号:
10155430 - 财政年份:2020
- 资助金额:
$ 50.43万 - 项目类别:
Immunoengineering Strategies for Musculoskeletal Trauma
肌肉骨骼创伤的免疫工程策略
- 批准号:
10448258 - 财政年份:2020
- 资助金额:
$ 50.43万 - 项目类别:
Immunoengineering Strategies for Musculoskeletal Trauma
肌肉骨骼创伤的免疫工程策略
- 批准号:
10612470 - 财政年份:2020
- 资助金额:
$ 50.43万 - 项目类别:
Mechanical Regulation of Vascular Growth and Remodeling
血管生长和重塑的机械调节
- 批准号:
9236156 - 财政年份:2016
- 资助金额:
$ 50.43万 - 项目类别:
Regenerative Rehabilitation of Complex Musculoskeletal Injuries
复杂肌肉骨骼损伤的再生康复
- 批准号:
10570304 - 财政年份:2016
- 资助金额:
$ 50.43万 - 项目类别:
Regenerative Rehabilitation of Complex Musculoskeletal Injuries
复杂肌肉骨骼损伤的再生康复
- 批准号:
10367370 - 财政年份:2016
- 资助金额:
$ 50.43万 - 项目类别:
In Vivo Monitoring of Strain and Oxygen in TE Constructs Using MEMS-Based Sensors
使用基于 MEMS 的传感器对 TE 结构中的应变和氧气进行体内监测
- 批准号:
8970271 - 财政年份:2015
- 资助金额:
$ 50.43万 - 项目类别:
TERMIS-Americas 2013 Opening Conference Symposium
TERMIS-美洲2013年开幕研讨会
- 批准号:
8597499 - 财政年份:2013
- 资助金额:
$ 50.43万 - 项目类别:
2013 Hilton Head Workshop for Regenerative Medicine
2013年希尔顿头岛再生医学研讨会
- 批准号:
8529819 - 财政年份:2013
- 资助金额:
$ 50.43万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 50.43万 - 项目类别:
Research Grant