Role of endothelial and progenitor cell bioenergetics-cytoskeletal machinery in diabetic angiopathies

内皮细胞和祖细胞生物能学-细胞骨架机制在糖尿病血管病中的作用

基本信息

  • 批准号:
    9895845
  • 负责人:
  • 金额:
    $ 39.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-15 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Diabetics suffer defective angiogenesis as a long-term complication and consequently a high propensity to develop critical limb ischemia (CLI), the leading cause of limb amputation worldwide. This is due, in significant part, to the deteriorated capacity of diabetic endothelial cells (ECs) and bone marrow-derived angiogenic cells, also called endothelial progenitor cells (EPCs) to properly elaborate needed blood vessels in ischemic areas. Lack of knowledge as to how this occurs has hampered therapeutic opportunities for CLI, including adoptive therapies with autologous EPCs. PPARγ-coactivator (PGC)-1α is a versatile regulator of gene transcription that coordinates broad metabolic programs in numerous tissues. The new and critical role for endothelial PGC-1α is now emerging. Diabetes induces PGC-1α in mouse ECs and human EPCs, which in turn activates Notch pathway that powerfully renders ECs resistant to VEGF. Ablation of EC PGC-1α in diabetic mice dramatically rescues the full angiogenic capacity, which highlights considerable promise of targeting PGC-1α-Notch axis to treat diabetic CLI. However, the significance of EC PGC-1α in diabetes is just beginning to be understood. Deeper knowledge of how exactly this pathway blunts EC and EPC functions is imperative to fully explore its therapeutic potential, since PGC-1α and Notch are expressed widely and mediate distinct, sometimes opposing effects among cell types. Burgeoning evidence indicates that ECs are highly glycolytic comparable to tumor cells, and that EC energy metabolism is the key mediator of sprouting angiogenesis in response to VEGF. In this proposal, we hypothesize that persistent angiogenic impairment of diabetes is, at least in part, mediated by PGC-1α/Notch-dependent alteration of cellular machineries that coordinate cytoskeleton with bioenergetics in ECs and EPCs, and that this mechanism is independent of previously recognized mediators of diabetic vascular dysfunction such as reactive oxygen species. Indeed, our preliminary findings identify novel downstream effectors of PGC-1α/Notch axis that strongly support our hypothesis, and that this regulator is surprisingly dispensable for health but required for diseases progression. This provides answers to many questions regarding the PGC-1α angiostatic mechanism, and opens avenues to develop safe and efficacious therapeutics for diabetic angiopathy that circumvent possible unwanted effects of targeting PGC-1α/Notch. Our hypothesis would thus be of translational relevance to innovate therapies, including gene delivery and adoptive EPCs transplantation, to salvage intractable dysfunction of ECs and EPCs in diabetes that causes angiogenic failure and CLI. Our concept would also provide clues to strategizing how to intervene in cell metabolism and cytoskeleton to develop therapeutics. The major goal of this proposal is to address this possibility.
摘要 糖尿病患者遭受作为长期并发症的缺陷性血管生成,并且因此具有高倾向性, 严重肢体缺血(CLI)是全球截肢的主要原因。这是由于,在很大程度上, 部分原因是糖尿病内皮细胞和骨髓源性血管生成细胞的能力下降, 也称为内皮祖细胞(EPCs),以适当地在缺血区域加工所需的血管。 缺乏关于这种情况如何发生的知识阻碍了CLI的治疗机会,包括收养 自体EPCs治疗。过氧化物酶体增殖物激活受体γ共激活因子(PGC)-1α是一种多功能的基因转录调节因子, 在许多组织中协调广泛的代谢程序。内皮细胞PGC-1α的新的关键作用是 现在正在出现。糖尿病诱导小鼠EC和人EPCs中的PGC-1α,其反过来激活Notch 这是一个强有力的途径,使EC对VEGF产生抗性。显著消融糖尿病小鼠EC PGC-1α 挽救了完整的血管生成能力,这突出了靶向PGC-1α-Notch轴的相当大的希望, 治疗糖尿病CLI。然而,EC PGC-1α在糖尿病中的意义才刚刚开始被理解。 更深入地了解这一途径如何确切地削弱EC和EPC功能对于充分探索其 治疗潜力,因为PGC-1α和Notch广泛表达,并介导不同的,有时是相反的 细胞类型之间的影响。越来越多的证据表明,内皮细胞与肿瘤细胞相比具有高度的糖酵解性, 细胞,EC能量代谢是响应VEGF的出芽血管生成的关键介质。在 根据这一建议,我们假设糖尿病的持续性血管生成障碍至少部分是由以下因素介导的: PGC-1α/Notch依赖性的细胞机械改变,其协调细胞骨架与生物能量学, EC和EPCs,并且这种机制独立于先前公认的糖尿病血管内皮细胞介导剂。 功能障碍,如活性氧。事实上,我们的初步发现确定了新的下游 PGC-1α/Notch轴的效应物,强烈支持我们的假设,并且这种调节剂令人惊讶地 对健康有益,但对疾病的进展是必需的。这为许多问题提供了答案 关于PGC-1α血管抑制机制,并开辟了开发安全有效治疗方法的途径 用于糖尿病血管病变,避免靶向PGC-1α/Notch可能产生的不良影响。我们的假设 因此,将与创新疗法,包括基因递送和过继性EPCs, 移植,以挽救糖尿病中导致血管生成失败的EC和EPC的顽固性功能障碍 的CLI。我们的概念还将为制定如何干预细胞代谢的策略提供线索, 细胞骨架来开发治疗方法。本提案的主要目标是解决这种可能性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quality-Quantity Control Culture Enhances Vasculogenesis and Wound Healing Efficacy of Human Diabetic Peripheral Blood CD34+ Cells.
  • DOI:
    10.1002/sctm.17-0043
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Tanaka R;Masuda H;Fujimura S;Ito-Hirano R;Arita K;Kakinuma Y;Hagiwara H;Kado M;Hayashi A;Mita T;Ogawa T;Watada H;Mizuno H;Sawada N;Asahara T
  • 通讯作者:
    Asahara T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naoki Sawada其他文献

Naoki Sawada的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
  • 批准号:
    22KJ2613
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    342887
  • 财政年份:
    2016
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
  • 批准号:
    278338
  • 财政年份:
    2013
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
  • 批准号:
    8505938
  • 财政年份:
    2012
  • 资助金额:
    $ 39.75万
  • 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
  • 批准号:
    7931495
  • 财政年份:
    2009
  • 资助金额:
    $ 39.75万
  • 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
  • 批准号:
    19390048
  • 财政年份:
    2007
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6546977
  • 财政年份:
    2003
  • 资助金额:
    $ 39.75万
  • 项目类别:
Suppression of Arabidopsis Reproductive Actins
拟南芥生殖肌动蛋白的抑制
  • 批准号:
    6655612
  • 财政年份:
    2003
  • 资助金额:
    $ 39.75万
  • 项目类别:
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
  • 批准号:
    5311554
  • 财政年份:
    2001
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
  • 批准号:
    6316669
  • 财政年份:
    2000
  • 资助金额:
    $ 39.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了