Regulation of mitochondrial morphodynamics in Toxoplasma gondii
弓形虫线粒体形态动力学的调控
基本信息
- 批准号:9896491
- 负责人:
- 金额:$ 39.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-03 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAmino AcidsApicalApicomplexaAutomobile DrivingAuxinsBiochemistryBiological AssayBiologyBiotinylationCalciumCellsCessation of lifeCo-ImmunoprecipitationsComplexCouplingCytokinesisDevelopmentDiseaseDrug TargetingEconomic BurdenEnvironmentHomeostasisImageImmunocompromised HostIn VitroIndividualKnock-outLassoLeadLifeLife Cycle StagesLightLipidsLytic PhaseMapsMechanicsMediatingMembraneMicroscopyMitochondriaMolecularMolecular GeneticsMonitorMorphologyMutation AnalysisOrganellesParasitesPharmaceutical PreparationsPhenotypePhosphorylation SitePhysiologyPlasmodium falciparumPlayPopulationPositioning AttributePost-Translational Protein ProcessingProcessProteinsProteomicsRegulationResearchResistanceRoleShapesSiteSocietiesStretchingStructureSystemToxoplasmaToxoplasma gondiiToxoplasmosisTransmembrane DomainTubular formationYeastsbasecombatdaughter cellexperimental studyextracellularhealth economicshuman pathogenin vivomutantnovelnovel therapeuticspathogenprotein complexsegregationtissue cultureyeast two hybrid system
项目摘要
A unique feature of parasites of the phylum Apicomplexa, such as Toxoplasma gondii, is the presence of a
single tubular mitochondrion, which is essential for parasite survival and a validated drug target. Most studies
of the apicomplexan mitochondrion have focused on its biochemistry and physiology. By contrast little is known
about the machinery that controls mitochondrial division and that regulate its structure, information that would
be critical for a thorough exploration of the mitochondrion as a drug target. Toxoplasma's singular
mitochondrion is very dynamic and undergoes morphological changes throughout the parasite's life cycle
including during the transition from the intracellular to the extracellular environment. While inside a host cell the
mitochondrion is maintained in a lasso shape that stretches around the parasite periphery where it has regions
of coupling with the parasite pellicle, suggesting the presence of membrane contact sites. Promptly after exit
from the host cell, these contact sites disappear, and the mitochondrion collapses indicating that dynamic
membrane contact sites regulate the positioning of the mitochondrion. Neither the functional significance nor
the proteins needed for the contact between Toxoplasma's mitochondrion and pellicle are known. We have
discovered a novel protein, Fip1, that associates with the mitochondrion and that when knocked out the normal
morphology of the mitochondrion is severely affected. In intracellular fip1 knockout parasites the mitochondrion
is not in a lasso shape as seen in wildtype parasites, but instead it is collapsed. Additionally, proper
mitochondrial segregation is disrupted in the knockout parasites, resulting in parasites with no mitochondrion
and mitochondrial material outside of the parasites. These gross morphological changes are associated with a
significant reduction of parasite propagation and can be rescued by reintroduction of a wildtype copy of Fip1.
Accordingly, we hypothesize that Fip1 mediates contact between the mitochondrion and the parasite pellicle in
a regulatable fashion, and that the Fip1 dependent mitochondrial morphology and dynamics are critical for
parasite propagation. Through a combination of molecular genetics, microscopy and proteomics we will
address the functional relevance and the mechanics of the mitochondrial morphology. In aim one we will
conduct a thorough in vivo and in vitro phenotypic characterization of Fip1 mutant strains to determine the role
of Fip1 and mitochondrial shape in parasite viability. Aim two focuses on identifying and characterizing
components of the Fip1 complex that mediates the association of the mitochondrion with the periphery of the
parasites. Finally, in aim three we will determine the regulatory mechanisms that drive the mitochondrial
morphological changes as the parasite exits its host cell. In conjunction, these experiments will shed light onto
the molecular mechanisms driving and regulating the morphodynamics of the Toxoplasma mitochondrion. As
the mitochondrion of this important human pathogen is essential for its survival and a validated drug target, our
studies will uncover novel targets for the development on new therapeutics.
顶复门寄生虫如刚地弓形虫的一个独特特征是存在一种
单管状囊泡,这是寄生虫生存所必需的,也是一个经过验证的药物靶点。大多数研究
的研究主要集中在其生物化学和生理学上。相比之下,
关于控制线粒体分裂和调节其结构的机制,
对于彻底探索线粒体作为药物靶点至关重要。弓形虫单一型
寄生虫是非常动态的,并在整个寄生虫的生命周期中经历形态变化
包括在从细胞内环境向细胞外环境转变的过程中。在宿主细胞内,
寄生虫维持在一个套索形状,围绕寄生虫周围伸展,
的耦合与寄生虫表膜,表明膜接触点的存在。退出后立即退出
从宿主细胞,这些接触点消失,和微粒子崩溃表明,动态
膜接触位点调节膜的定位。既没有功能意义,
弓形虫的寄生虫和表膜之间的接触所需的蛋白质是已知的。我们有
发现了一种新的蛋白质,Fip1,它与蛋白质结合,当敲除正常蛋白质时,
微粒子的形态受到严重影响。在细胞内FIP1敲除的寄生虫中,
不像野生型寄生虫那样呈套索状,而是折叠的。此外,适当
在敲除的寄生虫中,线粒体分离被破坏,导致寄生虫没有线粒体。
以及寄生虫外的线粒体物质这些肉眼可见的形态学变化与
寄生虫繁殖的显著减少,并且可以通过重新引入Fip1的野生型拷贝来拯救。
因此,我们假设Fip 1介导了寄生虫和寄生虫表膜之间的接触,
一种可调节的方式,Fip1依赖的线粒体形态和动力学对于
寄生虫繁殖通过分子遗传学、显微镜和蛋白质组学的结合,
解决线粒体形态的功能相关性和机制。在目标一,我们将
对Fip1突变株进行彻底的体内和体外表型表征,以确定其作用
Fip1和线粒体形状在寄生虫生存能力。目标二侧重于识别和表征
Fip1复合物的组成部分,介导的协会与周边的
寄生虫最后,在目标三中,我们将确定驱动线粒体的调节机制,
当寄生虫离开其宿主细胞时形态发生变化。结合起来,这些实验将揭示
驱动和调节弓形虫形态动力学的分子机制。作为
这种重要的人类病原体的感染对其生存至关重要,
这些研究将为新疗法的开发发现新的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gustavo A Arrizabalaga其他文献
Gustavo A Arrizabalaga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gustavo A Arrizabalaga', 18)}}的其他基金
IMSD at Indiana University School of Medicine through Inclusive Biomedical Research Training Program
印第安纳大学医学院的 IMSD 通过包容性生物医学研究培训计划
- 批准号:
10571029 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Homologs of brassinosteroid signaling proteins in Toxoplasma gondii regulate parasite division
弓形虫中油菜素类固醇信号蛋白的同源物调节寄生虫分裂
- 批准号:
10312866 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
Homologs of brassinosteroid signaling proteins in Toxoplasma gondii regulate parasite division
弓形虫中油菜素类固醇信号蛋白的同源物调节寄生虫分裂
- 批准号:
10448293 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
Regulation of mitochondrial morphodynamics in Toxoplasma gondii
弓形虫线粒体形态动力学的调控
- 批准号:
10365998 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Interleukin-1 and Steroid Signaling Drive Toxoplasma-induced Prostatic Hyperplasia
Interleukin-1 和类固醇信号传导驱动弓形虫诱发的前列腺增生
- 批准号:
10579258 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Interleukin-1 and Steroid Signaling Drive Toxoplasma-induced Prostatic Hyperplasia
Interleukin-1 和类固醇信号传导驱动弓形虫诱发的前列腺增生
- 批准号:
10159890 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Interleukin-1 and Steroid Signaling Drive Toxoplasma-induced Prostatic Hyperplasia
Interleukin-1 和类固醇信号传导驱动弓形虫诱发的前列腺增生
- 批准号:
10352452 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Regulation of mitochondrial morphodynamics in Toxoplasma gondii
弓形虫线粒体形态动力学的调控
- 批准号:
10580777 - 财政年份:2020
- 资助金额:
$ 39.28万 - 项目类别:
Dissecting the calcium dependent phosphorylation network of Toxoplasma gondii
剖析弓形虫的钙依赖性磷酸化网络
- 批准号:
9085774 - 财政年份:2016
- 资助金额:
$ 39.28万 - 项目类别:
Calcium signaling in the parasitophorous vacuole of Toxoplasma gondii
弓形虫寄生液泡中的钙信号传导
- 批准号:
8948686 - 财政年份:2015
- 资助金额:
$ 39.28万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 39.28万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists