3D Models of Immunotherapy
免疫疗法的 3D 模型
基本信息
- 批准号:9896778
- 负责人:
- 金额:$ 55.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdjuvantAngiogenic FactorAnimalsAntigen-Presenting CellsAntigensAwardBiocompatible MaterialsBiological ModelsBlocking AntibodiesBlood VesselsCTLA4 geneCancer VaccinesCancerousCell CommunicationCell Culture TechniquesCell physiologyCell surfaceCellsCellular biologyComplementCytotoxic T-LymphocytesDendritic CellsDevelopmentDevicesDistantExperimental ModelsFailureFutureGene ExpressionGenerationsHumanHuman BiologyImmuneImmune responseImmunomodulatorsImmunotherapyImpairmentIn VitroMalignant NeoplasmsModelingMusNeoplasms in Vascular TissuePatientsPerfusionPhase I Clinical TrialsPre-Clinical ModelRoleSiteT-LymphocyteTestingTherapeuticTherapeutic AgentsTissuesTumor AntigensTumor-infiltrating immune cellsVaccinationVaccine TherapyVaccinesWorkantitumor effectbasecancer immunotherapycancer vaccinationhuman modelhumanized mouseimmune checkpoint blockadeimmune functionin vitro Modelin vivolymph nodesmelanomamouse modelnovelnovel vaccinespreclinical studyprogrammed cell death protein 1responsesuccesstherapeutic vaccinethree-dimensional modelingtooltraffickingtumorvaccination strategyvascular factor
项目摘要
Cancer immunotherapy is currently providing exciting new treatment options for patients. However, the majority
of patients still do not respond to current immunotherapies, and this failure likely results, at least in part, from
an inability to generate potent cytotoxic T lymphocyte (CTL) responses against cancer antigens, and the
tolerizing effects of the tumors. Therapeutic vaccines may be needed to generate robust CTL responses, and
we have recently developed a new biomaterials strategy for vaccination that led to unprecedented ability to
eradicate established tumors in preclinical models. However, the development of next generation vaccines
based on this concept, and therapeutic cancer vaccines more generally, is significantly impaired by the
limitations of current model systems available to explore and test these types of therapies. Preclinical studies
typically utilize mouse models, but even humanized mouse models do not capture key aspects of human
biology relevant to immunotherapies. Cell culture studies can be used to explore human immune cell biology,
but standard human cell culture models do not recreate the 3D, multicellular interactions that direct the immune
response against cancer nor the tumor cell-immune cell interactions that dictate vaccination success. This
application proposes to create 3D models of human biology that enable one to study key aspects of
vaccination. These models will replicate, in vitro, the vaccine site itself, where the immune response to cancer
antigens is initiated, and the tumor, where immune cells encounter cancerous cells, and the function of the
immune cells is typically down-regulated by the cells within the tumor. In order to thoroughly characterize and
validate our approach, we will first create 3D mouse models of the vaccine site and the tumor, as this will allow
direct comparison between the 3D in vitro model and the in vivo tissue of the same type. These studies will be
key to validate the models. We will then create the human models, using tumor, vascular and immune cells all
derived from the same patient. These human models will be used to begin exploring several key issues in
therapeutic cancer vaccination, including the role of checkpoint blockade and angiogenic factors on the tumors,
and the impact of vaccination intratumorally on the immune cell response. At the completion of this project we
will have developed and thoroughly characterized novel, 3D models of both mouse and human biology that will
replicate the vaccination site and vascularized tumors. These models will allow us to explore key questions
relevant to human cancer immunotherapy, and provide a means to screen the impact of immunomodulatory
agents (e.g., various adjuvants) in the future as we and others develop new cancer immunotherapies.
癌症免疫疗法目前为患者提供了令人兴奋的新治疗选择。然而,大多数人
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FRANK S HODI其他文献
FRANK S HODI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FRANK S HODI', 18)}}的其他基金
Bevacizumab plus Ipilimumab in Unresectable Stage III or Stage IV Melanoma
贝伐珠单抗加伊匹单抗治疗不可切除的 III 期或 IV 期黑色素瘤
- 批准号:
8081790 - 财政年份:2010
- 资助金额:
$ 55.68万 - 项目类别:
Bevacizumab plus Ipilimumab in Unresectable Stage III or Stage IV Melanoma
贝伐珠单抗加伊匹单抗治疗不可切除的 III 期或 IV 期黑色素瘤
- 批准号:
7892847 - 财政年份:2010
- 资助金额:
$ 55.68万 - 项目类别:
CTLA-4 Blockade in GM-CSF Vaccinated Patients
GM-CSF 疫苗接种患者中的 CTLA-4 阻断
- 批准号:
6802868 - 财政年份:2003
- 资助金额:
$ 55.68万 - 项目类别:
CTLA-4 Blockade in GM-CSF Vaccinated Patients
GM-CSF 疫苗接种患者中的 CTLA-4 阻断
- 批准号:
6740055 - 财政年份:2003
- 资助金额:
$ 55.68万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
2896665 - 财政年份:1998
- 资助金额:
$ 55.68万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
6174369 - 财政年份:1998
- 资助金额:
$ 55.68万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
2689918 - 财政年份:1998
- 资助金额:
$ 55.68万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
6522454 - 财政年份:1998
- 资助金额:
$ 55.68万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 55.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 55.68万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 55.68万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 55.68万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 55.68万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 55.68万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 55.68万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 55.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 55.68万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 55.68万 - 项目类别:
Standard Grant














{{item.name}}会员




