Evaluating predictors of HIV vaccine efficacy: Statistical methods for estimation, testing, and inference

评估 HIV 疫苗功效的预测因素:估计、测试和推断的统计方法

基本信息

  • 批准号:
    9769500
  • 负责人:
  • 金额:
    $ 2.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-16 至 2019-12-15
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY We do not have a broadly efficacious vaccine against HIV, a virus that causes approximately 2 million new infections each year. Current proof-of-concept studies using broadly neutralizing antibodies (bnAbs) against HIV aim to understand how prevention varies with genotypic characteristics of the virus. Since performing an exhaustive search over all genotypic characteristics results in low statistical power to detect effects after adjusting for multiple comparisons, researchers typically pre-specify a small number of features to focus on. There is growing interest in using machine learning-based methods to both corroborate prior understanding and suggest new important genotypic characteristics in predicting sensitivity of the HIV virus to bnAbs. While machine learning-based methods have the potential to yield valid predictive models, issues remain in using these methods for estimating importance. The proposed research will address three such issues: developing a model-free variable importance measure, incorporating information from complex sampling designs, and valid statistical inference both when a genotypic feature is truly important and when it is not. First, the main classical tool for evaluating the importance of characteristics is the ANOVA decomposition, which makes strong modeling assumptions. Machine learning-based methods use minimal assumptions; however, these methods do not generally admit valid statistical inference, and the importance estimates are intimately tied to the technique employed. We will employ an approach based on ideas from the theory of semiparametric estimation and inference to develop a model-free measure of variable importance with valid confidence intervals for the true importance. Second, many HIV vaccine trials incorporate a nested case-control study, where additional information is measured on a subset of the trial participants. Estimating importance only using the subset ignores information from the remaining participants, resulting in a loss of efficiency and potentially adding some bias in estimating variable importance. The proposed research will develop methods that properly account for the sampling design. Finally, to determine if a set of features can be excluded from further analyses, we need a procedure for testing if the feature set truly has no importance. Hypothesis testing using machine learning-based methods is challenging, but we will build on recent advances in semiparametric inference to develop valid procedures for hypothesis testing in the context of variable importance. By combining advances in machine learning technology with ideas from semiparametric estimation and inference, we will determine important feature sets in predicting sensitivity of the HIV virus to bnAbs. In addition to yielding a deeper understanding of HIV neutralization, this information will allow researchers to make the best possible use of data from current clinical trials. This, in turn, could lead to either a shorter time to an HIV vaccine or new bnAbs in the research pipeline that are more broadly efficacious or potent. Any of these outcomes will transform preventative care for patients at risk of HIV infection.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient nonparametric statistical inference on population feature importance using Shapley values
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian David Williamson其他文献

Brian David Williamson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了