MRI methods for high resolution imaging of the lung

用于肺部高分辨率成像的 MRI 方法

基本信息

项目摘要

ABSTRACT There is an enormous economic and social burden of lung disease that demands improved tools to diagnose, stage, and follow treatment response. To assess heterogeneous and localized pulmonary diseases, cross- sectional imaging is often performed, most commonly with computed tomography (CT) or radioactive tracers (SPECT/PET). While these techniques provide structural and functional information, respectively, they deliver considerable radiation dose which limits use in radiosensitive and pediatric populations. This proposal aims to shift the current clinical practice paradigms for pulmonary imaging by making magnetic resonance imaging (MRI) a valuable modality for lung imaging. MRI delivers no ionizing radiation and can thus be used for longitudinal follow-up or screening in radio-sensitive populations. Furthermore, MRI provides multi- parametric contrast based on microstructure, ventilation, perfusion, cellular metabolism, and inflammation that can improve the assessment of lung diseases. Unfortunately, the radiation-free and multi-parametric benefits of MRI are not currently clinically available for lung imaging due to low signal in the lung and sensitivity to motion with current imaging methods. Recent developments by our group and others have demonstrated that the MRI acquisition paradigm can be modified to enable dramatic improvements in the visualization of the lung that rival CT in ventilated and cooperative subjects with the added benefit of providing improved soft tissue contrast. However, patients often suffer from poor lung function and/or have difficulty with compliance, which leads to complex, irregular breathing and bulk motion that cannot be handled by current MRI techniques. We propose a next generation of pulmonary MRI techniques that are designed to address and overcome the limitations of motion and low lung signal while also incorporating multiple MR soft tissue contrast mechanisms. These address all aspects of MRI scanning including patient preparation and experience, the MRI acquisition, and the reconstruction of images from the data. Specifically, we develop an audiovisual biofeedback system to improve the patient experience while also reducing the likelihood for complex motion, develop multi-contrast MRI sampling strategies which maximize embedded motion information, and create a reconstruction architecture which leverages the MRI data directly to estimate and correct for motion even in the case of complex motion. These methods would be beneficial for characterizing numerous diseases of the lung, both in pediatric and adult populations, including pulmonary nodules, pulmonary embolism, interstitial fibrosis, cystic fibrosis, COPD, asthma, and pulmonary infection. They will have the most significant impact in pediatrics, where there is an urgent need to limit ionizing radiation exposure. Anticipating applications to this population, we have included a broad evaluation in pediatric subjects and a specific pediatric imaging evaluation of pulmonary nodules from other primary malignancies. These nodule evaluations are most common use of pediatric chest CT at our institutions, and thus represent a substantial opportunity for dose reduction.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Michael Johnson其他文献

Kevin Michael Johnson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Michael Johnson', 18)}}的其他基金

Non-Invasive Imaging Markers to Elicit the Role of Vascular Involvement in Alzheimer’s Disease
非侵入性成像标记物可揭示血管受累在阿尔茨海默病中的作用
  • 批准号:
    10370542
  • 财政年份:
    2022
  • 资助金额:
    $ 66.61万
  • 项目类别:
Optimizing MRI for Neurologic Screening using Radiologist Crowdsourcing
利用放射科医生众包优化 MRI 进行神经系统筛查
  • 批准号:
    10527680
  • 财政年份:
    2022
  • 资助金额:
    $ 66.61万
  • 项目类别:
Non-Invasive Imaging Markers to Elicit the Role of Vascular Involvement in Alzheimer’s Disease
非侵入性成像标记物可揭示血管受累在阿尔茨海默病中的作用
  • 批准号:
    10560465
  • 财政年份:
    2022
  • 资助金额:
    $ 66.61万
  • 项目类别:
MRI methods for high resolution imaging of the lung
用于肺部高分辨率成像的 MRI 方法
  • 批准号:
    10153865
  • 财政年份:
    2018
  • 资助金额:
    $ 66.61万
  • 项目类别:
Accelerated Neuro-MRA Using Compressed Sensing and Constrained Reconstruction
使用压缩感知和约束重建加速神经 MRA
  • 批准号:
    8964845
  • 财政年份:
    2010
  • 资助金额:
    $ 66.61万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了