Combining new gene therapy with non-invasive spinal roots stimulation to improve synaptic plasticity at spino-muscular circuitry after spinal cord injury
将新基因疗法与非侵入性脊髓根刺激相结合,以改善脊髓损伤后脊髓肌肉回路的突触可塑性
基本信息
- 批准号:9898249
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAction PotentialsAcuteAdultAfghanistanAftercareAnatomyAnimal ModelAntibodiesAxonBehaviorBladderBladder DysfunctionCSPG4 geneCaringChestChondroitin ABC LyaseChondroitin Sulfate ProteoglycanChronicCicatrixClinicClinicalClinical TrialsCollaborationsConfocal MicroscopyContusionsCorticospinal TractsDevelopmentDisadvantagedDiseaseDorsalElectric StimulationElectromagneticsElectron MicroscopyElectrophysiology (science)EnzymesEvaluationExposure toExtracellular MatrixFiberFundingGaitGenesGlutamate ReceptorGoalsGrowthHairHindlimbHumanImmunochemistryImpairmentIndividualInfusion proceduresInjectionsInjuryLateralLegLocomotor RecoveryMagnetismMeasuresMediatingMembraneMetabolicMilitary PersonnelModelingMotorMotor NeuronsMuscleN-Methyl-D-Aspartate ReceptorsNTF3 geneNatural regenerationNeurogenic BladderNeuronsOligodendrogliaOutputPathway interactionsPatternPerformancePhysiologicalPhysiologyProcessPropertyRanvier&aposs NodesRattusRecombinantsRecoveryReflex actionResearchResidual stateResistanceSpinalSpinal CordSpinal Cord ContusionsSpinal InjectionsSpinal cord damageSpinal cord injurySpinal nerve root structureSynapsesSynaptic TransmissionSynaptic plasticityTechniquesTestingTreatment EfficacyUrethral sphincterUrinationUrineVeteransViral VectorWalkingWarWithdrawalanatomical tracingaxon growthaxon regenerationbaseblood-brain barrier functionclinically relevantdensitydesigneffective therapyexperimental studygait examinationgene therapyimprovedimproved functioningin vivoinhibitor/antagonistmotor deficitmotor function improvementmotor function recoverymotor recoverymultidisciplinarynerve supplyneural circuitneuronal excitabilityneurotrophic factorneutralizing antibodynovelnovel therapeuticsoligodendrocyte progenitorosmotic minipumppressurepreventremyelinationresponsespinal cord and brain injuryspine bone structurestem cellssynaptic functiontooltransgene deliverytransmission processtreatment effectvectorwhite matter
项目摘要
Impaired ability of voluntary walking and bladder dysfunction is an acute problem among veterans with
spinal cord injuries (SCI). Results of recent studies, including our own, revealed that there are at least three
major factors known to limit recovery from SCI: (1) decreased neuronal excitability, (2) presence of axonal
growth/regeneration inhibitors, and (3) lack of neurotrophin support. Using animal models, we have recently
demonstrated that degradation of scar-related inhibitory Chondroitin Sulfate Proteoglycans (CSPGs) with the
enzyme Chondroitinase-ABC (ChABC), combined with AAV-based delivery of neurotrophin NT3, induced
partial improvements following mild contusion SCI. A potential disadvantage to the use of ChABC is that it is
not specific, i.e. degrades all CSPGs, including those that are important components of the extracellular matrix.
In our search for more specific targets, we have recently demonstrated that one CSPG molecule, NG2,
known as a major obstacle to axonal regeneration following brain and spinal cord injury, blocks axonal
conduction, but other CSPGs tested did not. Acute administration of monoclonal NG2 function neutralizing
antibody (NG2-Ab; designed initially to prevent inhibitory effects of NG2 on axonal growth) prevents the
conduction block induced by acute injections of NG2 into the spinal cord. Intrathecal infusion of NG2-Ab, via
osmotic mini-pump for 2 weeks, however, induced only limited and transient improvements of motor function
following SCI. In an attempt to design an approach for safe, prolonged and clinically feasible delivery of NG2-
Ab, we have successfully created a new AAV-10 vector-based gene therapy tool for prolonged and clinically-
relevant delivery of a recombinant single chain variable fragment (scFv) anti-NG2 antibody: AAV-NG2Ab.
Results of preliminary experiments revealed that combined administration of AAV-NG2Ab and AAV-NT3
induced greater improvements, compared to ChABC/AAV-NT3, following mild (150 kDyn) contusions. Effects
of this novel gene therapy (AAV-NG2Ab/AAV-NT3) tool on motor recovery were, however, still limited in rats
with mild contusion and less obvious in rats with severe contusion SCI.
In attempts to further improve the beneficial effects of AAV-NG2Ab/AAV-NT3 and expand improvements to
severe SCI models, we now propose to add a third treatment component, i.e. non-invasive repetitive electro-
magnetic stimulation over spinal vertebrae (rSEMS). We recently found that rSEMS strengthens transmission
and improves function of NMDA receptor at motoneuron synaptic inputs, which is required to initiate effects of
NT-3 at these inputs. Thus, in the proposed project we have designed a new additive treatment comprised of
AAV10-NG2Ab, AAV10-NT3 and rSEMS. In addition to a mild contusion model of injury, we propose to use
severe mid-thoracic contusions which are known to induce major deficits of motor function and bladder activity
in rat and human SCI. An important and novel aspect of this research is evaluation of the proposed novel gene
therapy (AAV-NG2Ab/AAV-NT3) combined with rSEMS on bladder function. To evaluate the efficacy of these
treatments, we will conduct a multidisciplinary examination, including in vivo physiology, anatomy,
immunochemistry and behavior. We will examine the effects (additive or synergistic) of the new therapeutic
treatment on (1) strengthening synaptic connections through the injury epicenter to lumbar motoneurons, and
then to hindlimb muscles (using in-vivo electrophysiology); (2) anatomical plasticity of fibers accounting for the
persistence of the synaptic response after exposure to this novel treatment (using anatomical tracing and
confocal microscopy); (3) recovery of locomotor performance (using automated Catwalk gait analyses); (4)
recovery of bladder activity (using metabolic chamber and cystometry/ electrophysiology). To better understand
the effects of treatment at the cellular level, we will study axon remyelination (using Electron Microscopy) and NG2-
positive processes contacting nodes of Ranvier. Preliminary results of on-going experiments show improvements of
motor function in rats that have received this novel additive treatment after severe mid-thoracic contusive SCI.
自愿行走能力受损和膀胱功能障碍是退伍军人中的一个严重问题,
脊髓损伤(SCI)。最近的研究结果,包括我们自己的,显示至少有三个
已知限制SCI恢复的主要因素:(1)神经元兴奋性降低,(2)轴突的存在
生长/再生抑制剂,和(3)缺乏神经营养因子支持。利用动物模型,我们最近
证明了与疤痕相关的抑制性硫酸软骨素蛋白聚糖(CSPG)的降解
软骨素酶-ABC(ChABC)与基于AAV的神经营养因子NT 3递送组合,诱导了
轻度挫伤SCI后部分改善。使用ChABC的一个潜在缺点是,
非特异性的,即降解所有CSPG,包括作为细胞外基质的重要组分的那些。
在我们寻找更特异性的靶点时,我们最近证明了一种CSPG分子,NG 2,
被认为是脑和脊髓损伤后轴突再生的主要障碍,
传导,但其他CSPG测试没有。急性给予单克隆NG 2功能中和
抗体(NG 2-Ab;最初设计用于防止NG 2对轴突生长的抑制作用)阻止了
急性注射NG 2到脊髓中引起的传导阻滞。鞘内输注NG 2-Ab,通过
然而,渗透压微型泵2周仅引起有限和短暂的运动功能改善
SCI之后。为了设计一种安全、延长和临床上可行的NG 2-
抗体,我们已经成功地创建了一种新的基于AAV-10载体的基因治疗工具,用于长期和临床-
重组单链可变片段(scFv)抗NG 2抗体:AAV-NG 2Ab的相关递送。
初步实验的结果显示,AAV-NG 2Ab和AAV-NT 3的组合施用可显著地降低AAV-NG 2Ab和AAV-NT 3的表达。
与ChABC/AAV-NT 3相比,在轻度(150 kDyn)挫伤后,影响
然而,这种新的基因治疗工具(AAV-NG 2Ab/AAV-NT 3)对大鼠运动恢复的作用仍然有限
而重度挫伤组损伤程度较轻。
为了进一步改善AAV-NG 2Ab/AAV-NT 3的有益效果并扩大对AAV-NG 2Ab/AAV-NT 3的改善,
严重SCI模型,我们现在建议增加第三种治疗成分,即非侵入性重复电
脊柱磁刺激(rSEMS)。我们最近发现rSEMS加强了传输
并改善运动神经元突触输入处的NMDA受体的功能,这是启动
NT-3在这些输入。因此,在建议的项目中,我们设计了一种新的添加剂处理,
AAV 10-NG 2Ab、AAV 10-NT 3和rSEMS。除了轻度挫伤损伤模型外,我们建议使用
已知可引起运动功能和膀胱活动严重缺陷的严重胸中部挫伤
在大鼠和人SCI中。这项研究的一个重要和新颖的方面是评估提出的新基因
治疗(AAV-NG 2Ab/AAV-NT 3)联合rSEMS对膀胱功能的影响。为了评估这些药物的疗效,
治疗,我们将进行多学科的检查,包括在体内生理学,解剖学,
免疫化学和行为。我们将研究新的治疗方法的效果(累加或协同)。
(1)加强通过损伤震中至腰运动神经元的突触连接,和
然后到后肢肌肉(使用体内电生理学);(2)纤维的解剖可塑性,
暴露于这种新型治疗后突触反应的持续性(使用解剖追踪和
共聚焦显微镜);(3)运动性能的恢复(使用自动化Catwalk步态分析);(4)
恢复膀胱活动(使用代谢室和膀胱测压/电生理学)。更好地了解
在细胞水平的治疗效果,我们将研究轴突髓鞘再生(使用电子显微镜)和NG 2-
接触兰维尔结的阳性突起。正在进行的实验的初步结果表明,
在严重胸中部挫伤性SCI后接受这种新型添加剂治疗的大鼠的运动功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor L Arvanian其他文献
Victor L Arvanian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor L Arvanian', 18)}}的其他基金
Combining new gene therapy with non-invasive spinal roots stimulation to improve synaptic plasticity at spino-muscular circuitry after spinal cord injury
将新基因疗法与非侵入性脊髓根刺激相结合,以改善脊髓损伤后脊髓肌肉回路的突触可塑性
- 批准号:
10531535 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Combining new gene therapy with non-invasive spinal roots stimulation to improve synaptic plasticity at spino-muscular circuitry after spinal cord injury
将新基因疗法与非侵入性脊髓根刺激相结合,以改善脊髓损伤后脊髓肌肉回路的突触可塑性
- 批准号:
9441224 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Combining new gene therapy with non-invasive spinal roots stimulation to improve synaptic plasticity at spino-muscular circuitry after spinal cord injury
将新基因疗法与非侵入性脊髓根刺激相结合,以改善脊髓损伤后脊髓肌肉回路的突触可塑性
- 批准号:
10158426 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Enhancing Plasticity in Damaged Spinal Cord to Repair Transmission and Function
增强受损脊髓的可塑性以修复传输和功能
- 批准号:
8668722 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Enhancing Plasticity in Damaged Spinal Cord to Repair Transmission and Function
增强受损脊髓的可塑性以修复传输和功能
- 批准号:
8543006 - 财政年份:2013
- 资助金额:
-- - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
-- - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




