Phenotypic profiling of bacterial stress response networks: A transformative framework for characterizing and predicting antibiotic targets and interactions
细菌应激反应网络的表型分析:用于表征和预测抗生素靶点和相互作用的变革框架
基本信息
- 批准号:9898254
- 负责人:
- 金额:$ 2.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2020-08-21
- 项目状态:已结题
- 来源:
- 关键词:AerobicAffectAnaerobic BacteriaAnimal ModelAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceBacteriaBacterial PhysiologyBiological ProcessBiologyCRISPR interferenceCell SizeCell physiologyCellsCessation of lifeCommunicationConsensusDNADataDatabasesDevelopmentDisadvantagedDrug AntagonismDrug EffluxDrug ScreeningDrug SynergismDrug TargetingEnvironmentEscherichia coliEssential GenesFluorescenceGene ExpressionGene Expression ProfilingGeneticGenetic TranscriptionGlobal ChangeGoalsGrowthHealthHeterogeneityHumanImageImage AnalysisKineticsKnock-outKnowledgeLeadLibrariesLinkMapsMasksMeasurementMeasuresMembraneMetabolicMetabolismMicroscopyModelingMolecularMonitorMorphologyNutritionalOrganismOxygenPathogenesisPathway interactionsPharmaceutical PreparationsPhenotypePhysiologicalPopulationProcessProteinsReaderReporterReporter GenesRepressionResistanceSequential TreatmentSourceStressSystemTemperatureTestingTherapeuticTrustanalysis pipelineassaultbasebiological adaptation to stresscell behaviorcellular targetingcombinatorialdrug discoveryeffective therapyemerging antibiotic resistancegene inductionimprovedinsightinterestknock-downmicrobialmutantnetwork architecturenew therapeutic targetnovelpromoterprotein protein interactionresponsesynergismtooltreatment strategy
项目摘要
Project Abstract/Summary
The Wellcome Trust estimates the death toll due to microbial pathogenesis to be 700,000/year. This number is
expected to rapidly increase in the next decade if the rise of antimicrobial resistance remains unaddressed. As
a first step to understanding the mechanisms of antibiotic resistance emergence, recent studies have explored
the biological processes affected by antibiotics from a holistic cellular perspective. Results from these studies
have challenged the traditional notion of each antibiotic eliciting a specific stress, revealing communication
between bacterial responses that highlight the importance of probing systems-level cellular physiology and
exploiting multi-dimensional phenotypes.
Although many attempts have been made to characterize cellular response to antibiotics on a
comprehensive scale, most of these studies suffer from the significant disadvantage of measuring bulk
population-level responses. As most resistant mutants are a sub-population that dominates after selective
antibiotic bottlenecks have been applied, bulk measurements that fail to account for single-cell behavior do not
capture the entire spectrum of responses to antibiotic stress.
I will leverage two key technological developments: 1) a high-throughput imaging and image analysis
pipeline, and 2) a CRISPR interference library of essential gene knockdowns in the model organism
Escherichia coli to answer fundamental questions about the bacterial response to antibiotics. I propose to use
a combination of high-throughput microscopy and plate reader-based bulk measurements of fluorescent
stress-response reporters to map response dynamics in E. coli under both oxygen-rich and anoxic conditions. I
will combine morphological parameters and stress response information to build a rich landscape for
phenotypic profiling that can be utilized to identify targets of novel antibiotics, predict antagonism in
combinatorial therapies, and probe the fundamental wiring between pathways. To investigate the molecular
mechanisms underlying the network architecture, I will employ CRISPRi genetic tools to alter drug-target
expression and drug efflux. My overarching goal is to eliminate a key bottleneck in drug discovery and drug
administration approaches–the identification of cellular targets for antibiotics with unknown mechanisms of
action and prediction of combinatorial therapeutics with improved efficacy from the vantage point of stress-
response activation. This study should accelerate the antibiotic discovery pipeline through rapid target
identification while also contributing deep understanding of bacterial physiology to guide future research across
a wide range of organisms.
项目摘要/摘要
惠康信任估计,由于微生物发病机理的死亡人数为700,000/年。这个数字是
如果抗菌素耐药性的兴起尚未得到解决,预计在未来十年将迅速增加。作为
了解抗生素抗性出现机制的第一步,最近的研究探索了
从整体细胞的角度来看,受抗生素影响的生物过程。这些研究的结果
挑战了每种抗生素的传统概念,引起了特定的压力,揭示了交流
在细菌反应之间强调了探测系统级的细胞生理学的重要性和
利用多维表型。
尽管已经尝试了许多尝试表征细胞对抗生素的反应
综合规模,大多数研究都遭受了衡量大量的巨大灾难
人口级反应。因为大多数抗性突变体是一个子群,在选择性之后主导
已经应用了抗生素瓶颈,无法解释单细胞行为的批量测量
捕获整个对抗生素应激的反应。
我将利用两个关键的技术发展:1)高通量成像和图像分析
管道和2)模型有机体中基本基因敲低的CRIS PR干扰库
大肠杆菌回答有关细菌对抗生素的基本问题。我建议使用
高通量显微镜和基于板块的荧光量的大量测量的组合
应力反应记者在富氧和缺氧条件下绘制大肠杆菌中的响应动态。我
将结合形态学参数和压力响应信息,以建立丰富的景观
可以用来鉴定新抗生素靶标的表型分析,预测拮抗作用
组合疗法,并探测途径之间的基本接线。研究分子
网络体系结构的基础机制,我将使用CRISPRI遗传工具来改变药品目标
表达和药物流出。我的总体目标是消除药物发现和毒品中的关键瓶颈
管理方法 - 鉴定具有未知机制的抗生素的细胞靶标
从应力点起作用和预测组合疗法和提高效率的组合疗法 -
响应激活。这项研究应通过快速目标加速抗生素发现管道
识别同时也有助于深入了解细菌生理学,以指导未来的研究
各种各样的生物。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of fixation on bacterial cellular dimensions and integrity.
- DOI:10.1016/j.isci.2021.102348
- 发表时间:2021-04-23
- 期刊:
- 影响因子:5.8
- 作者:Zhu L;Rajendram M;Huang KC
- 通讯作者:Huang KC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manohary Rajendram其他文献
Manohary Rajendram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
- 批准号:
10642243 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
The role of anaerobic microbiota in cystic fibrosis airway disease trajectory
厌氧微生物群在囊性纤维化气道疾病轨迹中的作用
- 批准号:
10716654 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Role of sulfide in oral microbiota-host interactions that promote periodontitis
硫化物在促进牙周炎的口腔微生物群与宿主相互作用中的作用
- 批准号:
10828614 - 财政年份:2023
- 资助金额:
$ 2.83万 - 项目类别:
Obesogenic diet-induced intestinal epithelium repair responses link dysbiosis and cardiovascular disease
肥胖饮食诱导的肠上皮修复反应将生态失调与心血管疾病联系起来
- 批准号:
10345474 - 财政年份:2022
- 资助金额:
$ 2.83万 - 项目类别: