Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
基本信息
- 批准号:9899260
- 负责人:
- 金额:$ 44.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-10 至 2021-09-29
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimal ModelAreaBacteriaBindingBinding SitesBiological ModelsBiologyCREBBP geneChromatinComplexDNADNA MethylationDNA SequenceDNA-Directed RNA PolymeraseDataDependenceDevelopmental GeneDiseaseDrosophila genusDrosophila melanogasterEmbryoEnergy MetabolismEnergy-Generating ResourcesEnhancersEquilibriumEukaryotaEvolutionFoundationsGene Expression RegulationGenesGenetic TranscriptionGenomeGraphLaboratoriesLeadLightMeasuresMediatingMediator of activation proteinMedicineMethodsModelingMolecularMutagenesisNucleosomesPatternPhenotypePhysicsPlant RootsPlayPositioning AttributePost-Translational Protein ProcessingProcessPropertyProteinsRecording of previous eventsRegulationRoleStudy modelsSystemTestingTheoretical StudiesThermodynamicsTimeTranscriptional RegulationWorkbasechromatin modificationchromatin remodelingdesignexperimental studyflexibilityhistone modificationinformation processinginterdisciplinary collaborationknock-downmRNA Expressionmathematical methodsmathematical modelmathematical theoryneglectprotein expressionrecruitresponsetranscription factor
项目摘要
PROJECT ABSTRACT
Gene regulation – how genes are turned on in the right place, at the right time and in the right
amount – is a problem central to most areas of biology and medicine. Our understanding of
gene regulation began with classical studies in bacteria, which introduced the idea that proteins
called “transcription factors” (TFs) determine which gene is turned on by binding to regulatory
DNA sequences and recruiting RNA polymerase (RNAP). The situation in eukaryotes, however,
is far more complicated. We focus in this proposal on two critical aspects of eukaryotic gene
regulation that are not addressed in the bacterial paradigm. First, eukaryotic DNA is packaged
into chromatin and accessibility to TF binding sites is dynamically re-organised by continuously
expending external sources of energy, such as ATP. Second, in eukaryotes multi-protein co-
regulators such as mediator and CREB-binding protein (CBP) intercede between TFs and
RNAP, serving as “integrators” of regulatory information. Pioneering studies from several
laboratories have identified many of the molecular components involved in this regulatory
complexity, however, the quantitative concepts used to reason about how eukaryotic gene
regulation are still largely based on the bacterial paradigm. This is an alarming discrepancy in
light of the central importance of gene regulation. In recent work, we used mathematical models
rooted in physics to show that this bacterial paradigm cannot account for experimentally
measured data in eukaryotes. We examined, in particular, the question of how sharply a gene is
turned on in response to a TF, an important property in many contexts. We introduced new
concepts for analyzing information integration by co-regulators and energy expenditure and
showed how these processes could explain the observed sharpness. In this proposal, we seek
to build upon this highly-productive, inter-disciplinary collaboration. We will integrate
mathematical theory with quantitative experiments in the well-studied model organism
Drosophila melanogaster to identify which molecular mechanisms of information integration and
energy expenditure are involved in regulating the developmental gene hunchback, whose sharp
expression is crucial for patterning the early fruitfly embryo. As in the classical bacterial studies,
we anticipate that a deep analysis of this particular gene will provide a new foundation on which
to understand in quantitative terms the regulation of other eukaryotic genes and thus, that this
study will have broad impact across biology and medicine.
项目摘要
基因调控-基因如何在正确的地方,在正确的时间和正确的时间打开
数量-是生物学和医学大多数领域的核心问题。我们理解
基因调控始于对细菌的经典研究,它引入了蛋白质
一种称为“转录因子”(TF)的蛋白质通过与调控因子结合来决定哪个基因被打开。
DNA序列和募集RNA聚合酶(RNAP)。然而,真核生物的情况是,
要复杂得多我们的建议集中在真核基因的两个关键方面,
在细菌范例中没有涉及的调节。首先,真核DNA被包装
进入染色质和TF结合位点的可及性是动态重组的,
消耗外部能源,如ATP。第二,在真核生物中,多蛋白质共-
调节剂如介体和CREB结合蛋白(CBP)在TF和
RNAP,作为监管信息的“整合者”。几项开创性的研究
实验室已经鉴定了许多参与这种调节的分子组分,
复杂性,然而,用于推理真核基因如何表达的定量概念
调节仍然主要基于细菌范例。这是一个令人震惊的差异,
鉴于基因调控的核心重要性。在最近的工作中,我们使用数学模型
植根于物理学,以表明这种细菌范例不能解释实验
真核生物的测量数据。我们特别研究了一个基因
在许多情况下,这是一个重要的属性。我们介绍了新的
用于分析协同调节器和能量消耗的信息集成的概念,
显示了这些过程如何解释观察到的锐度。在这一建议中,我们寻求
建立在这种高效的跨学科合作之上。我们将整合
数学理论与定量实验在充分研究的模式生物
果蝇,以确定哪些分子机制的信息整合和
能量消耗参与调节发育基因hunchback,
表达对于形成早期果蝇胚胎的图案至关重要。在经典的细菌研究中,
我们预计,对这一特定基因的深入分析将提供一个新的基础,
以定量的方式了解其他真核基因的调控,因此,
这项研究将对生物学和医学产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela H DePace其他文献
Angela H DePace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela H DePace', 18)}}的其他基金
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10493445 - 财政年份:2017
- 资助金额:
$ 44.58万 - 项目类别:
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10296507 - 财政年份:2017
- 资助金额:
$ 44.58万 - 项目类别:
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10676836 - 财政年份:2017
- 资助金额:
$ 44.58万 - 项目类别:
Multi-scale modeling of genetic variation in a developmental network
发育网络中遗传变异的多尺度建模
- 批准号:
8554281 - 财政年份:2013
- 资助金额:
$ 44.58万 - 项目类别:
Multi-scale modeling of genetic variation in a developmental network
发育网络中遗传变异的多尺度建模
- 批准号:
8740503 - 财政年份:2013
- 资助金额:
$ 44.58万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 44.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




