Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
基本信息
- 批准号:10493445
- 负责人:
- 金额:$ 47.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-10 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgebraAreaAttentionBacteriaBindingBinding SitesBiological ModelsBiologyBlastodermChromatinComplexDNADNA MethylationDNA SequenceDNA-Directed RNA PolymeraseDataDevelopmentDifferential EquationDiseaseDrosophila genusEmbryoEnergy MetabolismEnergy-Generating ResourcesEnhancersEquilibriumEukaryotaEvolutionFundingGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomeGoalsGrainGraphLaboratoriesLeadLinkMarkov ChainsMathematicsMeasuresMediator of activation proteinMedicineMessenger RNAMethodsModelingMolecularNucleosomesOrganismOutputPatternPhenotypePhysicsPhysiologyPlant RootsPositioning AttributePost-Translational Protein ProcessingProcessProductionPropertyProteinsRegulationResearchRoleStudy modelsSystemThermodynamicsTimeTranscriptional RegulationWorkbasebiological systemschromatin remodelingequilibrium modelexperimental studygenetic regulatory proteininterestmRNA Expressionmathematical methodsmathematical modelmathematical theoryneglectoptogeneticsreal-time imagesrecruitresponsetheoriestranscription factor
项目摘要
Project Abstract
Gene regulation – how genes are turned on in the right place, at the right time and in the right amount – is a
problem central to most areas of biology and medicine. Our understanding of gene regulation arose from
classical studies in bacteria: proteins called “transcription factors” (TFs) bind to regulatory DNA sequences and
recruit RNA polymerase (RNAP). The situation in eukaryotes is far more complicated. For example, eukaryotic
DNA is packaged around nucleosomes into chromatin and external sources of energy, such as ATP, are used
to reorganise chromatin, remodel nucleosomes and post-translationally modify regulatory proteins. Pioneering
studies from several laboratories have identified many of the molecular components involved in this regulatory
complexity. However, the quantitative concepts used to reason about eukaryotic gene regulation are still
largely based on the bacterial paradigm. Our work focuses on addressing this alarming gap. Previously, we
developed a strategy of “following the energy” by integrating mathematical models rooted in physics with
quantitative and synthetic experiments in the early Drosophila embryo. The fruit fly offers an unrivaled model
system for measuring and perturbing gene regulation in a living organism. The mathematics exploits a graph-
based approach to Markov processes that permits algebraic calculation of required quantities. This allowed us
to identify the functional limits to energy expenditure, while avoiding fitting models to data or numerically
simulating differential equations. We have provided strong evidence that energy expenditure away from
thermodynamic equilibrium is essential for the functional properties of eukaryotic genes. In the present
proposal, we build on this previous strategy. We hypothesize that data from the Drosophila hunchback gene
cannot be accounted for by any thermodynamic equilibrium model of regulated recruitment of RNAP, no matter
how complicated the molecular details. We believe we can exploit a method of “coarse graining” within the
linear framework to establish this remarkably powerful result. We will then extend our experimental methods
and modeling beyond regulated recruitment, to analyze the dynamics of RNAP itself and the stochastic
production of mRNA. We will introduce real-time imaging of mRNA and optogenetic perturbations of TFs to
measure quantitative aspects of gene expression, and will extend our algebraic methods to accommodate
such data. We hypothesize that energy expenditure in gene regulation is essential to modulate RNAP
dynamics and generate the observed stochastic patterns of hunchback mRNA expression. Our efforts will
formulate a new model of hunchback that integrates regulation, energy expenditure, RNAP dynamics and
mRNA stochasticity.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela H DePace其他文献
Angela H DePace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela H DePace', 18)}}的其他基金
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10296507 - 财政年份:2017
- 资助金额:
$ 47.03万 - 项目类别:
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
10676836 - 财政年份:2017
- 资助金额:
$ 47.03万 - 项目类别:
Information Integration and Energy Expenditure in Eukaryotic Gene Regulation
真核基因调控中的信息整合和能量消耗
- 批准号:
9899260 - 财政年份:2017
- 资助金额:
$ 47.03万 - 项目类别:
Multi-scale modeling of genetic variation in a developmental network
发育网络中遗传变异的多尺度建模
- 批准号:
8554281 - 财政年份:2013
- 资助金额:
$ 47.03万 - 项目类别:
Multi-scale modeling of genetic variation in a developmental network
发育网络中遗传变异的多尺度建模
- 批准号:
8740503 - 财政年份:2013
- 资助金额:
$ 47.03万 - 项目类别:
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 47.03万 - 项目类别:
Standard Grant














{{item.name}}会员




