Neuromodulatory Control of Cerebellar Synaptic Processing and Sensory Input
小脑突触处理和感觉输入的神经调节控制
基本信息
- 批准号:9898477
- 负责人:
- 金额:$ 34.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAcuteAffectAgonistAnatomyAnimalsArchitectureBrainCalciumCalibrationCell NucleusCellsCerebellar CortexCerebellumCognitiveCytoplasmic GranulesDataElectrophysiology (science)ElementsEyeFaceFiberFutureGeneticGlutamatesGolgi ApparatusImageIn VitroInterneuronsInvestigationLearningLifeLobuleMicroinjectionsModernizationMonitorMotorMotor outputMovementMusNeuromodulatorNeuronsNeurotransmittersPharmacologyPhysiologicalPhysiologyPlayPopulationPreparationProteinsReflex actionRegulationSensorySerotoninSignal TransductionSiteSliceSourceSpecificitySynapsesSynaptic plasticitySystemTestingViralWalkingWorkWritingcell typecholinergiccrystallinityexperimental studyflexibilitygenetic approachgranule cellin vivoinsightmossy fibermotor learningneural circuitneuroregulationneurotransmissionoptogeneticsreceptorreceptor expressionsensory inputsensory integrationsensory stimulusserotonin receptorsynaptic inhibitiontwo-photon
项目摘要
Sensorimotor integration in the cerebellum is essential for refining motor output. Much of this
integration occurs at the initial stage of cerebellar processing, in the granule cell layer where
mossy fibers carrying diverse sensory and motor information converge. While these
computations have been thought to occur through rigid, anatomically defined circuits, recent
evidence suggests that granule cell layer integration can be contextually modified.
Neuromodulators represent a strong candidate for such regulation, and anatomical studies have
revealed prominent cholinergic and serotonergic projections into the cerebellar granule cell
layer. However, it is unknown how these neuromodulators act at the cellular and circuit level to
control sensory and motor integration. Our preliminary data reveal that Golgi cells, interneurons
that provide the sole source of inhibition to the granule cell layer, express receptors for both
acetylcholine (ACh) and serotonin (5-HT). We find that these neuromodulators bi-directionally
regulate the excitability of Golgi cells: ACh suppresses Golgi cell spiking while 5-HT elevates
spiking. In addition, we find that granule cells are depolarized by ACh. This suggests that ACh
may generally act to increase excitability in the granule cell layer. Using a combination of
modern physiological, genetic and anatomical approaches in the mouse, we will test the
following aims: In Aim 1 we will use an in vitro brain slice preparation to identify the sites of ACh
and 5-HT receptor expression on the major cell classes of the granule cell layer: the granule
cells, Golgi cells and mossy fibers. Using targeted application of neuromodulatory agonists and
specific pharmacology, we will determine how these neuromodulators directly impact cellular
excitability both acutely and after prolonged exposure. In Aim 2, we will use retrograde tracing to
identify the sources of cerebellar cholinergic and serotonergic inputs. This will allow us to
identify whether these neuromodulatory inputs are part of a larger, brain-wide system, and
under what conditions they are active. Localizing the afferent neuromodulatory nuclei will also
allow viral delivery of optogenetic proteins, and thus investigation of the effect of endogenously
released neuromodulators on the intact granule cell circuit. In particular, we will test the
hypothesis that ACh acts to increase excitability in the granule cell layer while 5-HT acts to
decrease it. Then in Aim 3, we will test how these neuromodulatory effects on excitability
regulate granule cell layer integration of sensory and motor input in vivo. We will use multi-unit
electrophysiology and two-photon imaging to determine how activation of cholinergic and
serotonergic inputs alter the activity of the population of granule cells. In particular, we will
present sensory stimuli with graded intensity to test the hypothesis that ACh and 5-HT change
the gain of the granule cell network. Together, these experiments will reveal the synaptic and
circuit mechanisms that support context-dependent processing in the cerebellum. In the future,
we hope to extend these studies to determine how these mechanisms support context-specific
learning in behaving animals.
小脑的感觉运动整合对于改善运动输出至关重要。这在很大程度
整合发生在小脑处理的初始阶段,在颗粒细胞层,
苔藓纤维承载着不同的感觉和运动信息。虽然这些
计算一直被认为是通过刚性的、解剖学定义的电路发生的,最近,
有证据表明,颗粒细胞层的整合可以根据环境而改变。
神经调质代表了这种调节的强有力的候选者,并且解剖学研究
显示出突出的胆碱能和胆碱能投射到小脑颗粒细胞
层.然而,尚不清楚这些神经调质如何在细胞和回路水平上起作用,
控制感觉和运动的整合我们的初步数据显示,高尔基体细胞,中间神经元
为颗粒细胞层提供唯一的抑制源,表达两种受体
乙酰胆碱(ACh)和5-羟色胺(5-HT)。我们发现这些神经调质
调节高尔基体细胞的兴奋性:ACh抑制高尔基体细胞的峰化,而5-HT升高
扣球此外,我们发现颗粒细胞被ACh去极化。这表明ACh
一般可用于增加颗粒细胞层的兴奋性。结合使用
现代生理学,遗传学和解剖学方法在小鼠中,我们将测试
以下目标:在目标1中,我们将使用体外脑切片制备来鉴定ACh的位点
和5-HT受体在颗粒细胞层的主要细胞类别上的表达:颗粒
细胞、高尔基体细胞和苔藓纤维。使用神经调节激动剂的靶向应用,
具体药理学,我们将确定这些神经调节剂如何直接影响细胞
急性和长时间暴露后的兴奋性。在目标2中,我们将使用逆行追踪来
确定小脑胆碱能和胆碱能输入的来源。这将使我们能够
确定这些神经调节输入是否是更大的全脑系统的一部分,
在什么条件下它们是活跃的。定位传入神经调节核也将
允许光遗传蛋白的病毒递送,从而研究内源性
在完整的颗粒细胞回路上释放神经调质。特别是,我们将测试
假设ACh的作用是增加颗粒细胞层的兴奋性,而5-HT的作用是
然后在目标3中,我们将测试这些神经调节作用如何影响兴奋性。
调节体内感觉和运动输入的颗粒细胞层整合。我们将使用多单元
电生理学和双光子成像,以确定如何激活胆碱能和
多巴胺能输入改变颗粒细胞群的活性。特别是要
呈现具有分级强度的感觉刺激以检验ACh和5-HT改变的假设
颗粒细胞网络的增益。总之,这些实验将揭示突触和
小脑中支持上下文相关处理的电路机制。在未来,
我们希望扩展这些研究,以确定这些机制如何支持上下文特定的
学习行为动物。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ASTN2 modulates synaptic strength by trafficking and degradation of surface proteins.
- DOI:10.1073/pnas.1809382115
- 发表时间:2018-10-09
- 期刊:
- 影响因子:11.1
- 作者:Behesti H;Fore TR;Wu P;Horn Z;Leppert M;Hull C;Hatten ME
- 通讯作者:Hatten ME
The cerebellum influences vocal timing.
小脑影响发声时间。
- DOI:10.7554/elife.40447
- 发表时间:2018
- 期刊:
- 影响因子:7.7
- 作者:Hull,Court
- 通讯作者:Hull,Court
Measuring Feedforward Inhibition and Its Impact on Local Circuit Function.
测量前馈抑制及其对局部电路功能的影响。
- DOI:10.1101/pdb.prot095828
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Hull,Court
- 通讯作者:Hull,Court
Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions.
- DOI:10.1038/s41593-018-0228-8
- 发表时间:2018-10
- 期刊:
- 影响因子:25
- 作者:Heffley W;Song EY;Xu Z;Taylor BN;Hughes MA;McKinney A;Joshua M;Hull C
- 通讯作者:Hull C
Cellular and Synaptic Properties of Local Inhibitory Circuits.
局部抑制电路的细胞和突触特性。
- DOI:10.1101/pdb.top095281
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Hull,Court
- 通讯作者:Hull,Court
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
COURT A HULL其他文献
COURT A HULL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('COURT A HULL', 18)}}的其他基金
Role of ASTN2 in cerebellar circuit function and ASD-related behaviors
ASTN2 在小脑回路功能和 ASD 相关行为中的作用
- 批准号:
10524768 - 财政年份:2020
- 资助金额:
$ 34.78万 - 项目类别:
Role of ASTN2 in cerebellar circuit function and ASD-related behaviors
ASTN2 在小脑回路功能和 ASD 相关行为中的作用
- 批准号:
10319194 - 财政年份:2020
- 资助金额:
$ 34.78万 - 项目类别:
Differential Excitation of Cortical Neurons by Somatosensory Inputs
体感输入对皮质神经元的差异激发
- 批准号:
7331102 - 财政年份:2007
- 资助金额:
$ 34.78万 - 项目类别:
Differential Excitation of Cortical Neurons by Somatosensory Inputs
体感输入对皮质神经元的差异激发
- 批准号:
7591330 - 财政年份:2007
- 资助金额:
$ 34.78万 - 项目类别:
Differential Excitation of Cortical Neurons by Somatosensory Inputs
体感输入对皮质神经元的差异激发
- 批准号:
7481147 - 财政年份:2007
- 资助金额:
$ 34.78万 - 项目类别:
Regulation of Endocytosis at a Ribbon-Type Synapse
带状突触内吞作用的调节
- 批准号:
6794016 - 财政年份:2002
- 资助金额:
$ 34.78万 - 项目类别:
Regulation of Endocytosis at a Ribbon-Type Synapse
带状突触内吞作用的调节
- 批准号:
6647079 - 财政年份:2002
- 资助金额:
$ 34.78万 - 项目类别:
Regulation of Endocytosis at a Ribbon-Type Synapse
带状突触内吞作用的调节
- 批准号:
6551061 - 财政年份:2002
- 资助金额:
$ 34.78万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 34.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 34.78万 - 项目类别:
Standard Grant