Integrating bioinformatics into multiscale models for hepatocellular carcinoma

将生物信息学整合到肝细胞癌的多尺度模型中

基本信息

  • 批准号:
    9490092
  • 负责人:
  • 金额:
    $ 60.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-17 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Liver cancer is a major global health problem, responsible for the 3rd most cancer deaths worldwide. Diagnosis often occurs at late stages, at which point liver tumors have complex tumor/stroma interactions across multiple spatial and temporal scales. The resulting multiscale interactions drive tumor progression and therapeutic response. The proposed project will develop new mathematical/computational techniques to model molecular, cellular, tumor, and organ scales to elucidate the mechanisms driving liver cancer progression and to predict the response to targeted therapeutics. The investigator team is uniquely suited to develop the proposed multiscale models of hepatocellular carcinoma (HCC), the most common type of liver cancer. The expertise of the four PIs/PDs is synergistic, combining a state of the art multiscale computational models of cancer (Dr. Popel) with molecular and cellular features inferred from bioinformatics analysis (Dr. Fertig) using state of the art 3D in vitro organoid models (Dr. Ewald) and in vivo mouse models of HCC (Dr. Tran). The well-integrated experimental/computational design of the proposal will result in new algorithms for predictive computational modeling of therapeutic response in HCC. We include extensive experimental studies for model development, parameter tuning, and validation. Specific Aim 1 will infer bioinformatically the signaling pathways important in crosstalk between cancer and stromal cells, integrate models of intracellular signaling and 3D extracellular ligand transport and biochemical reactions and embed them into the cell fate decision rules of an agent-based model of cellular agents resulting in a multiscale hybrid model. The model will be parameterized with phospho- proteomic data under relevant ligand stimulations identified by the bioinformatics analysis and with growth, invasion, proteomic, and genomic data from co-cultured cancer and stromal cells and organoids; independent data will be used for model validation. We will use this model to predict outcomes in a 3D in vitro organoid model of HCC. Specific Aim 2 will extend and adapt this hybrid model to model the tumor microenvironment and to account for the drug pharmacokinetic and pharmacodynamic, the 3D geometry of the liver, molecular interactions in vivo and cellular composition inferred from bioinformatics analysis. Finally, Specific Aim 3 will develop new bioinformatics analysis algorithms to initialize the model with distribution of cellular agents and molecular states from The Cancer Genome Atlas (TCGA) genomic and proteomic data to predict the efficacy of targeted therapeutics in the diverse genetic backgrounds of human liver cancer. The project will develop innovative computational techniques to integrate features at both the molecular and cellular scales from genomics and proteomics analysis with multiscale computational models to predict therapeutic response. The resulting computational algorithms will address the IMAG cutting edge challenge of fusing data-rich and data- poor scales for predictive multiscale computational modeling of biological systems.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Josef Ewald其他文献

Andrew Josef Ewald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Josef Ewald', 18)}}的其他基金

Mapping the single cell state basis of metastasis in space and time
绘制空间和时间转移的单细胞状态基础
  • 批准号:
    10738579
  • 财政年份:
    2023
  • 资助金额:
    $ 60.79万
  • 项目类别:
RTB 2
实时出价2
  • 批准号:
    10532387
  • 财政年份:
    2021
  • 资助金额:
    $ 60.79万
  • 项目类别:
RTB 2
实时出价2
  • 批准号:
    10375195
  • 财政年份:
    2021
  • 资助金额:
    $ 60.79万
  • 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
  • 批准号:
    10372006
  • 财政年份:
    2018
  • 资助金额:
    $ 60.79万
  • 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
  • 批准号:
    10524181
  • 财政年份:
    2018
  • 资助金额:
    $ 60.79万
  • 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
  • 批准号:
    9891969
  • 财政年份:
    2018
  • 资助金额:
    $ 60.79万
  • 项目类别:
Cancer Invasion and Metastasis
癌症侵袭和转移
  • 批准号:
    10409352
  • 财政年份:
    1997
  • 资助金额:
    $ 60.79万
  • 项目类别:
Cancer Invasion and Metastasis
癌症侵袭和转移
  • 批准号:
    10650408
  • 财政年份:
    1997
  • 资助金额:
    $ 60.79万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 60.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了