Integrating bioinformatics into multiscale models for hepatocellular carcinoma

将生物信息学整合到肝细胞癌的多尺度模型中

基本信息

  • 批准号:
    10524181
  • 负责人:
  • 金额:
    $ 6.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-17 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Liver cancer is a major global health problem, responsible for the 3rd most cancer deaths worldwide. Diagnosis often occurs at late stages, at which point liver tumors have complex tumor/stroma interactions across multiple spatial and temporal scales. The resulting multiscale interactions drive tumor progression and therapeutic response. The proposed project will develop new mathematical/computational techniques to model molecular, cellular, tumor, and organ scales to elucidate the mechanisms driving liver cancer progression and to predict the response to targeted therapeutics. The investigator team is uniquely suited to develop the proposed multiscale models of hepatocellular carcinoma (HCC), the most common type of liver cancer. The expertise of the four PIs/PDs is synergistic, combining a state of the art multiscale computational models of cancer (Dr. Popel) with molecular and cellular features inferred from bioinformatics analysis (Dr. Fertig) using state of the art 3D in vitro organoid models (Dr. Ewald) and in vivo mouse models of HCC (Dr. Tran). The well-integrated experimental/computational design of the proposal will result in new algorithms for predictive computational modeling of therapeutic response in HCC. We include extensive experimental studies for model development, parameter tuning, and validation. Specific Aim 1 will infer bioinformatically the signaling pathways important in crosstalk between cancer and stromal cells, integrate models of intracellular signaling and 3D extracellular ligand transport and biochemical reactions and embed them into the cell fate decision rules of an agent-based model of cellular agents resulting in a multiscale hybrid model. The model will be parameterized with phospho- proteomic data under relevant ligand stimulations identified by the bioinformatics analysis and with growth, invasion, proteomic, and genomic data from co-cultured cancer and stromal cells and organoids; independent data will be used for model validation. We will use this model to predict outcomes in a 3D in vitro organoid model of HCC. Specific Aim 2 will extend and adapt this hybrid model to model the tumor microenvironment and to account for the drug pharmacokinetic and pharmacodynamic, the 3D geometry of the liver, molecular interactions in vivo and cellular composition inferred from bioinformatics analysis. Finally, Specific Aim 3 will develop new bioinformatics analysis algorithms to initialize the model with distribution of cellular agents and molecular states from The Cancer Genome Atlas (TCGA) genomic and proteomic data to predict the efficacy of targeted therapeutics in the diverse genetic backgrounds of human liver cancer. The project will develop innovative computational techniques to integrate features at both the molecular and cellular scales from genomics and proteomics analysis with multiscale computational models to predict therapeutic response. The resulting computational algorithms will address the IMAG cutting edge challenge of fusing data-rich and data- poor scales for predictive multiscale computational modeling of biological systems.
项目总结

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genomic biomarkers to guide precision radiotherapy in prostate cancer.
基因组生物标志物指导前列腺癌精确放疗。
  • DOI:
    10.1002/pros.24373
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Sutera, Philip;Deek, Matthew P.;Van Der Eecken, Kim;Wyatt, Alexander W.;Kishan, Amar U.;Molitoris, Jason K.;Ferris, Matthew J.;Siddiqui, M. Minhaj;Rana, Zaker;Mishra, Mark V.;Kwok, Young;Davicioni, Elai;Spratt, Daniel E.;Ost, Piet;Feng, Felix Y.;Tran, Phuoc T.
  • 通讯作者:
    Tran, Phuoc T.
Histology Specific Molecular Biomarkers: Ushering in a New Era of Precision Radiation Oncology.
组织学特异性分子生物标志物:开创精准放射肿瘤学的新时代。
  • DOI:
    10.1016/j.semradonc.2023.03.001
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Sutera,Philip;Skinner,Heath;Witek,Matthew;Mishra,Mark;Kwok,Young;Davicioni,Elai;Feng,Felix;Song,Daniel;Nichols,Elizabeth;Tran,PhuocT;Bergom,Carmen
  • 通讯作者:
    Bergom,Carmen
TP53 structure-function relationships in metastatic castrate-sensitive prostate cancer and the impact of APR-246 treatment.
转移性去势敏感前列腺癌中的 TP53 结构-功能关系以及 APR-246 治疗的影响。
  • DOI:
    10.1002/pros.24629
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hoang,Tung;Sutera,Philip;Nguyen,Triet;Chang,Jinhee;Jagtap,Shreya;Song,Yang;Shetty,AmolC;Chowdhury,DipanwitaD;Chan,Aaron;Carrieri,FrancescaA;Hathout,Lara;Ennis,Ronald;Jabbour,SalmaK;Parikh,Rahul;Molitoris,Jason;Song,Danie
  • 通讯作者:
    Song,Danie
Metastasis-directed Therapy Prolongs Efficacy of Systemic Therapy and Improves Clinical Outcomes in Oligoprogressive Castration-resistant Prostate Cancer.
  • DOI:
    10.1016/j.euo.2020.05.004
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Deek MP;Taparra K;Phillips R;Velho PI;Gao RW;Deville C;Song DY;Greco S;Carducci M;Eisenberger M;DeWeese TL;Denmeade S;Pienta K;Paller CJ;Antonarakis ES;Olivier KR;Park SS;Tran PT;Stish BJ
  • 通讯作者:
    Stish BJ
Patterns of Recurrence and Modes of Progression After Metastasis-Directed Therapy in Oligometastatic Castration-Sensitive Prostate Cancer.
转移指导治疗的寡聚化cast割敏感的前列腺癌的复发模式和进展模式。
  • DOI:
    10.1016/j.ijrobp.2020.08.030
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deek MP;Taparra K;Dao D;Chan L;Phillips R;Gao RW;Kwon ED;Deville C;Song DY;Greco S;Carducci MA;Eisenberger M;DeWeese TL;Denmeade S;Pienta K;Paller CJ;Antonarakis ES;Olivier KR;Park SS;Stish BJ;Tran PT
  • 通讯作者:
    Tran PT
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Josef Ewald其他文献

Andrew Josef Ewald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Josef Ewald', 18)}}的其他基金

Mapping the single cell state basis of metastasis in space and time
绘制空间和时间转移的单细胞状态基础
  • 批准号:
    10738579
  • 财政年份:
    2023
  • 资助金额:
    $ 6.83万
  • 项目类别:
RTB 2
实时出价2
  • 批准号:
    10532387
  • 财政年份:
    2021
  • 资助金额:
    $ 6.83万
  • 项目类别:
RTB 2
实时出价2
  • 批准号:
    10375195
  • 财政年份:
    2021
  • 资助金额:
    $ 6.83万
  • 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
  • 批准号:
    10372006
  • 财政年份:
    2018
  • 资助金额:
    $ 6.83万
  • 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
  • 批准号:
    9490092
  • 财政年份:
    2018
  • 资助金额:
    $ 6.83万
  • 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
  • 批准号:
    9891969
  • 财政年份:
    2018
  • 资助金额:
    $ 6.83万
  • 项目类别:
Cancer Invasion and Metastasis
癌症侵袭和转移
  • 批准号:
    10409352
  • 财政年份:
    1997
  • 资助金额:
    $ 6.83万
  • 项目类别:
Cancer Invasion and Metastasis
癌症侵袭和转移
  • 批准号:
    10650408
  • 财政年份:
    1997
  • 资助金额:
    $ 6.83万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.83万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了