Molecular mechanisms of sensory transduction in the gut
肠道感觉转导的分子机制
基本信息
- 批准号:9770841
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAffectAfferent NeuronsAreaAttentionAwardBiologicalBiological AssayBiophysicsCalciumCell CommunicationCell physiologyCellsChemicalsDataDetectionDevelopmentDietDiseaseElectrophysiology (science)ElementsEnterobacteria phage P1 Cre recombinaseEnterochromaffin CellsEnvironmentEpithelial CellsFLP recombinaseFoundationsFunctional disorderGastrointestinal PhysiologyGated Ion ChannelGeneticGoalsHistologicHuman bodyHypersensitivityImageInflammatoryIntestinesIon Channel GatingIrritable Bowel SyndromeIrritantsLabelLaboratoriesLearningMeasurementMeasuresMechanicsMediatingMentorsMentorshipMolecularMusNerveNerve FibersNervous system structureNeural PathwaysNeurosciencesNutrientOrganOrganoidsPainPain DisorderPathway interactionsPhasePhysiologicalPhysiologyPreparationPropertyRegulationResearchRoleSensorySensory ReceptorsSerotoninSignal TransductionStimulusSurfaceSynapsesSystemTechnologyTestingTimeLineTissuesTrainingTraining SupportTransgenic MiceVisceral painWorkafferent nervecell typedetectorexperiencefluorophoregastrointestinal epitheliumgenetic approachin vivointerestintersectionalitymicrobialmicrobiotaneuroregulationnovelpatch clampprogramsreceptorrecombinaserelating to nervous systemsensory mechanismtherapeutic developmenttooltranscriptome sequencingvoltage
项目摘要
Project Summary
Specialized sensory organs contain functionally dedicated cell types that detect relevant stimuli and relay
information to the nervous system. In this proposal, we ask if this concept also pertains to the gut epithelium,
which constitutes one of the largest exposed surface areas of the human body and is in contact with a diverse
chemical environment. Indeed, numerous chemical changes in the gut lumen have been associated with
visceral pain, including irritants, endogenous inflammatory molecules, and microbiota-produced metabolites.
Despite growing interest in the gut-neural axis, relatively little is known about molecular mechanisms
underlying chemosensory transduction by the gut epithelium, or how this information is transmitted to the
nervous system. Serotonergic enterochromaffin (EC) cells are rare, but highly specialized entities within the gut
epithelium that have been implicated in visceral pain but have eluded detailed characterization due, in part, to
their paucity. To circumvent these limitations, we generated intestinal organoids from a transgenic mouse in
which EC cells are marked with a fluorophore, enabling us to carry out detailed single-cell profiling of these
cells in the context of a native tissue environment. Our preliminary data show that these cells are electrically
excitable, polymodal chemosensory detectors of the gut that engage in direct synaptic interactions with
sensory nerve fibers to transduce information about intestinal state. In these proposed studies, we will define
intrinsic EC cell electrophysiological properties, chemosensory transduction mechanisms, and serotonin
release mechanisms (Aim 1) and utilize this information to investigate the physiological effects of EC activation
on and associated neural pathways (Aim 2). Finally, we will obtain genetic access to EC cells and use
chemogenetic tools to examine their contribution to visceral pain (Aim 3). This work will elucidate EC cell
chemosensory mechanisms and examine their role in visceral pain to provide a mechanistic foundation for
understanding how the gut epithelium communicates with the nervous system. This molecular foundation is
critical for uncovering basic mechanisms that contribute to pathophysiology underlying visceral pain disorders,
such as irritable bowel syndrome.
Proposed experimental approaches for this award combine my expertise in cellular physiology and biophysics
with new training in genetics and GI physiology, allowing me to address significant biological questions and
identify novel molecular mechanisms. A unique mentorship team with extensive experience in signal
transduction, pain, synaptic physiology, and GI physiology will provide expert guidance and an ideal
environment for proposed scientific and professional development. Thus, the training supported by this award
will be critical to establishing a unique and important independent research program in neuroscience and
gastrointestinal physiology.
项目摘要
专门的感觉器官包含功能上专用的细胞类型,它们检测相关的刺激并传递
传递给神经系统的信息。在这项提议中,我们问这个概念是否也适用于肠道上皮,
它构成了人体最大的暴露表面积之一,并与不同的
化学环境。事实上,肠腔中的许多化学变化都与
内脏疼痛,包括刺激物、内源性炎症分子和微生物区系产生的代谢物。
尽管人们对肠道神经轴的兴趣与日俱增,但对其分子机制知之甚少。
肠道上皮的潜在化学感觉转导,或该信息是如何传递到
神经系统。5-羟色胺能肠嗜铬细胞(EC)很少见,但在肠道内是高度特化的实体。
上皮与内脏疼痛有牵连,但由于部分原因,未能得到详细的描述
他们的匮乏。为了绕过这些限制,我们从一只转基因小鼠身上产生了肠道器官。
哪些EC细胞用荧光团标记,使我们能够对这些细胞进行详细的单细胞图谱分析
在自然组织环境中的细胞。我们的初步数据显示,这些电池是电性的
肠道中参与直接突触相互作用的可兴奋的多模式化学感觉探测器
感觉神经纤维传递有关肠道状态的信息。在这些拟议的研究中,我们将界定
EC细胞固有的电生理特性、化学感觉转导机制和5-羟色胺
释放机制(目标1),并利用这一信息来研究EC激活的生理效应
On和相关神经通路(目标2)。最后,我们将获得获得EC细胞的遗传途径,并使用
检查它们对内脏疼痛的贡献的化学发生工具(目标3)。这项工作将阐明EC细胞
并研究它们在内脏疼痛中的作用,为以下方面提供机制基础
了解肠道上皮如何与神经系统沟通。这个分子基础是
对于揭示导致内脏疼痛障碍的基本机制至关重要,
比如肠易激综合征。
建议的实验方法结合了我在细胞生理学和生物物理学方面的专业知识
通过新的遗传学和胃肠道生理学培训,使我能够解决重要的生物学问题和
确定新的分子机制。一支在Signal领域拥有丰富经验的独特的指导团队
转导、疼痛、突触生理学和胃肠道生理学将提供专家指导和理想的
为拟议的科学和专业发展提供环境。因此,该奖项支持的培训
将对建立一个独特而重要的神经科学和
胃肠生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Bellono其他文献
Nicholas Bellono的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Bellono', 18)}}的其他基金
Molecular Mechanisms of Integrative Signal Transduction
整合信号转导的分子机制
- 批准号:
10458073 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Molecular Mechanisms of Integrative Signal Transduction
整合信号转导的分子机制
- 批准号:
10274862 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Molecular Mechanisms of Integrative Signal Transduction
整合信号转导的分子机制
- 批准号:
10630839 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant