An automated pipeline for macromolecular structure discovery in cellular electron cryo-tomography

细胞电子冷冻断层扫描中大分子结构发现的自动化流程

基本信息

项目摘要

SUMMARY – OVERALL Cellular cryo-tomography has emerged as a critical tool for the visualization and structural study of the molecular nanomachines at the heart of cellular function. Although the basic electron cryo-tomography technique has been used for several decades, the technology is being revolutionized by recent advances in sample preparation, electron cryo-microscopy hardware, improved capabilities for automatic data collection, direct electron detection imaging devices, and phase plate technologies. Combined, these advances led to the ability to generate extraordinarily large numbers of cellular cryo-tomograms of exquisite quality. In principle, such large data sets offer insights into cellular variation in disease states as well as better insights into basic cellular function, opening new possibilities for studying the underpinnings of health and disease at the finest possible level, potentially leading to completely new diagnostics for cancer and other cell-altering diseases. However, collection of cellular data is now at a far faster rate than can currently be analyzed with existing methods, producing a serious barrier to progress: to match the data production rates of a single laboratory, at least 50 experienced scientists would need to handle the data analysis. The primary goal of this Program Project is to establish quantitative and highly automated tools for the reconstruction and interpretation of highly complex cellular tomographic data. We have assembled a highly synergistic team of PIs with complimentary expertise in cutting-edge computational and experimental electron microscopy techniques to achieve this goal through collaborative efforts. Project 1 (Hanein & Penczek) focuses on development and implementation of tomogram quality assessment and validation techniques and on experimentally guided optimization of data collection strategies. Project 2 focuses on automatic tomographic reconstruction technology, extraction of various features from the tomograms, and the analysis of distribution patterns derived from the extracted features. Project 3 focuses on development of quantitative tools for tomogram annotation through deep learning and sub-tomogram alignment as well as interactive visualization tools. The set of highly automated tools developed in this Program Project will permit us to interpret 5–10x as much data as is possible using existing methods, greatly expanding the types of cellular variations we can effectively study.
摘要-总体 细胞冷冻断层扫描已成为一种重要的工具,可视化和结构研究的, 分子纳米机器是细胞功能的核心虽然基本的电子冷冻断层扫描 技术已经使用了几十年,该技术正在革命性的最新进展, 样品制备,电子冷冻显微镜硬件,改进的自动数据收集能力, 直接电子检测成像装置和相位板技术。综合起来,这些进步导致了 能够生成大量高质量的细胞冷冻断层图像。在原则上, 这样的大数据集提供了对疾病状态中细胞变异的深入了解, 细胞功能,为研究健康和疾病的基础提供了新的可能性 可能的水平,可能导致癌症和其他细胞改变疾病的全新诊断。 然而,蜂窝数据的收集现在以比当前可以利用现有的无线通信系统分析的速率快得多的速率进行。 方法,产生了严重的进步障碍:为了匹配单个实验室的数据生产率, 至少需要50名有经验的科学家来处理数据分析。 该计划项目的主要目标是建立定量和高度自动化的工具, 高度复杂的细胞断层扫描数据的重建和解释。我们已经召集了一个 在尖端计算和实验电子领域拥有互补专业知识PI的协同团队 显微镜技术,以实现这一目标,通过合作努力。项目1(Hanein & Penczek)的重点是 X线断层成像质量评估和验证技术的开发和实施, 实验指导的数据收集策略优化。项目2侧重于自动断层扫描 重建技术,从断层图像中提取各种特征,并分析分布 从所提取的特征导出的图案。项目3侧重于开发定量工具, 通过深度学习和子断层图像对齐以及交互式可视化进行断层图像注释 工具.在这个程序项目中开发的一套高度自动化的工具将允许我们将5- 10倍解释为 使用现有的方法尽可能多的数据,大大扩展了我们可以使用的细胞变异类型。 有效学习。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NIELS VOLKMANN其他文献

NIELS VOLKMANN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NIELS VOLKMANN', 18)}}的其他基金

Automated docking and modeling for electron microscopy
电子显微镜自动对接和建模
  • 批准号:
    8018308
  • 财政年份:
    2010
  • 资助金额:
    $ 92.84万
  • 项目类别:
Automated docking and modeling for electron microscopy
电子显微镜自动对接和建模
  • 批准号:
    7253421
  • 财政年份:
    2006
  • 资助金额:
    $ 92.84万
  • 项目类别:
STRUCTURE
结构
  • 批准号:
    7313470
  • 财政年份:
    2006
  • 资助金额:
    $ 92.84万
  • 项目类别:
Automated docking and modeling for electron microscopy
电子显微镜自动对接和建模
  • 批准号:
    7497453
  • 财政年份:
    2006
  • 资助金额:
    $ 92.84万
  • 项目类别:
Automated docking and modeling for electron microscopy
电子显微镜自动对接和建模
  • 批准号:
    7649469
  • 财政年份:
    2006
  • 资助金额:
    $ 92.84万
  • 项目类别:
Automated docking and modeling for electron microscopy
电子显微镜自动对接和建模
  • 批准号:
    7144822
  • 财政年份:
    2006
  • 资助金额:
    $ 92.84万
  • 项目类别:
COMPUTER APPLICATIONS FOR TOMOGRAPHY SEGMENTATION AND VISUALIZATION
断层摄影分割和可视化的计算机应用
  • 批准号:
    7181416
  • 财政年份:
    2005
  • 资助金额:
    $ 92.84万
  • 项目类别:
Three-dimensional Molecular Pattern Recognition
三维分子模式识别
  • 批准号:
    6620495
  • 财政年份:
    2002
  • 资助金额:
    $ 92.84万
  • 项目类别:
Three-dimensional Molecular Pattern Recognition
三维分子模式识别
  • 批准号:
    6849333
  • 财政年份:
    2002
  • 资助金额:
    $ 92.84万
  • 项目类别:
Three-dimensional Molecular Pattern Recognition
三维分子模式识别
  • 批准号:
    6699939
  • 财政年份:
    2002
  • 资助金额:
    $ 92.84万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 92.84万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 92.84万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 92.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了