Novel Non-Invasive Coronary Flow Patterning to Predict Early Coronary Microvascular Disease
新型非侵入性冠状动脉血流模式可预测早期冠状动脉微血管疾病
基本信息
- 批准号:9769734
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeArtificial IntelligenceBiomechanicsBlood flowCardiacCollaborationsComputer SimulationCoronaryCoronary ArteriosclerosisCoronary arteryDataDevelopmentDiabetes MellitusDiabetic mouseDietDiseaseDoppler EchocardiographyEarly DiagnosisEchocardiographyElementsHeart DiseasesHyperemiaHypertensionImaging TechniquesImpairmentInterdisciplinary StudyLaboratoriesMachine LearningMagnetic Resonance ImagingMeasuresMetabolic syndromeMethodsMicrocirculationMicrovascular DysfunctionModelingNon-Insulin-Dependent Diabetes MellitusObesityPatternPhysiologicalPublicationsReproducibilityResistanceStructureTestingTimebasecoronary perfusiondb/db mousediabeticdisorder preventionearly onsetexperimental studyheart functionimprovedinnovationinterdisciplinary approachmacrovascular diseasemathematical modelnoninvasive diagnosisnovelpressureprevent
项目摘要
PROJECT SUMMARY
Coronary microvascular disease (CMD) is notoriously difficult to diagnose non-invasively, and current
methods of assessing CMD utilize only the peak velocity of the coronary flow pattern. While new imaging
techniques such as cardiac magnetic resonance imaging (MRI) have improved the assessment coronary
perfusion, there are currently no non-invasive methods that incorporate the coronary flow pattern over a
complete cardiac cycle to definitively assess and predict the development of CMD.
Coronary blood flow (CBF) reflects the summation of flow in the coronary microcirculation, and our lab has
begun to harness the full CBF pattern under varying flow and disease conditions (e.g. type 2 diabetes) to
determine whether it might harbor novel clues leading to the early detection of CMD. Our past and preliminary
data indicate an early onset of CMD in both type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS)
that occurs prior to the onset of macrovascular complications and that are characterized by blood flow
impairments and alterations in coronary resistance microvessel (CRM) structure, function, and biomechanics.
Our data also uncovered innovative correlations between CRM structure/biomechanics and our newly-defined
features of the coronary flow pattern, some of which were unique to normal or diabetic mice. We have initially
utilized these CBF features, in the presence and absence of other factors such as cardiac function, to develop
a mathematical model in collaboration with Drs. Christopher Bartlett and William Ray that to date demonstrated
that 6 simple factors can predict a normal vs. diabetic coronary flow pattern with 85% predictive accuracy.
Utilizing a multidisciplinary approach, these preliminary data strongly suggest that the coronary flow pattern
and physiological modulators of it (e.g. coronary micovascular structure/function/biomechanics, cardiac
function, etc), may be useful in directly diagnosing early CMD. Therefore, we hypothesize that dissecting the
elements that influence coronary flow patterning will be critical determinants in the direct assessment
of coronary microvascular disease using computational modeling. Using our previous publications and
our preliminary data as guides, the hypothesis will be tested by addressing two specific aims: 1) Determine
whether unique time-dependent CBF patterning in normal and T2DM is dictated by a combination of CRM
remodeling and biomechanics, coronary flow pattern dynamics, and cardiac function, permitting the
development of a computational model to accurately predict CMD; 2) Determine the reproducibility and
robustness of the machine learning model in predicting CMD in a diet-induced obesity/diabetes mouse model.
If successful, these studies will be the first to simultaneously examine the influence of CRMs, CBF, and cardiac
structure/function on the distinct pattern of coronary flow, and it will determine whether a mathematical model
may be useful in establishing a direct assessment of CMD to eventually enable clinicians to conduct a more
direct non-invasive diagnosis of CMD for the prevention and/or treatment of heart disease.
项目总结
冠状动脉微血管疾病(CMD)是出了名的难以非侵入性诊断,目前
评估CMD的方法仅使用冠脉血流模式的峰值速度。虽然新的成像技术
心脏磁共振成像(MRI)等技术改进了对冠状动脉的评估
灌注,目前还没有非侵入性的方法来结合冠状动脉血流模式
完整的心动周期以明确评估和预测CMD的发展。
冠脉血流量(CBF)反映了冠脉微循环中血流的总和,我们实验室已经
开始在不同的血流和疾病条件下(例如2型糖尿病)利用完整的CBF模式来
确定它是否可能蕴藏着导致早期发现CMD的新线索。我们的过去和初步
数据显示,在2型糖尿病(T2 DM)和代谢综合征(METS)中,CMD都是较早发病的
发生在大血管并发症发生之前,以血流为特征
冠状动脉阻力微血管(CRM)结构、功能和生物力学的损伤和改变。
我们的数据还揭示了CRM结构/生物力学和我们的新定义之间的创新关联
冠脉血流模式的特征,其中一些是正常或糖尿病小鼠所独有的。我们已经初步完成了
利用这些CBF特征,在存在和不存在其他因素(如心功能)的情况下,开发
一个与克里斯托弗·巴特利特博士和威廉·雷博士合作的数学模型
这6个简单因素可以预测正常和糖尿病冠状动脉血流模式,预测准确率为85%。
利用多学科方法,这些初步数据强烈表明,冠状动脉血流模式
以及它的生理调节因子(例如冠状动脉微血管结构/功能/生物力学、心脏
功能等),可用于早期CMD的直接诊断。因此,我们假设解剖
影响冠状动脉血流模式的因素将是直接评估的关键决定因素
使用计算机建模进行冠状动脉微血管疾病的研究。使用我们以前的出版物和
我们的初步数据作为指导,将通过解决两个具体目标来检验假设:1)确定
正常和T2 DM患者独特的随时间变化的CBF模式是否由CRM的组合决定
重塑和生物力学、冠脉血流动力学和心功能,允许
开发精确预测CMD的计算模型;2)确定重复性和
机器学习模型在饮食诱导肥胖/糖尿病小鼠模型中预测CMD的稳健性。
如果成功,这些研究将是第一次同时检查CRM、CBF和心脏的影响
结构/功能对冠状动脉血流的不同模式,它将决定是否有一个数学模型
可能有助于建立对CMD的直接评估,最终使临床医生能够进行更多
用于预防和/或治疗心脏病的CMD的直接无创诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron J Trask其他文献
Aerobic Exercise Training Improves Endothelial Dysfunction in Type 2 Diabetic Mice by Advanced Glycation End Products-Independent Pathway
- DOI:
10.1016/j.freeradbiomed.2011.10.157 - 发表时间:
2011-11-01 - 期刊:
- 影响因子:
- 作者:
Maria Andréia Delbin;Aaron J Trask;Mary Cismowski;Pamela a Lucchesi;Angelia Zanesco - 通讯作者:
Angelia Zanesco
Aaron J Trask的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron J Trask', 18)}}的其他基金
Novel Non-Invasive Coronary Flow Patterning to Predict Early Coronary Microvascular Disease
新型非侵入性冠状动脉血流模式可预测早期冠状动脉微血管疾病
- 批准号:
10163298 - 财政年份:2018
- 资助金额:
$ 22.8万 - 项目类别:
Asylum Research MFP-3D-BIO Atomic Force Microscope
Asylum Research MFP-3D-BIO 原子力显微镜
- 批准号:
9273209 - 财政年份:2017
- 资助金额:
$ 22.8万 - 项目类别:
Differential Macro- and Micro-Vascular Remodeling in Type 2 Diabetes and Metabolic Syndrome
2 型糖尿病和代谢综合征的差异性宏观和微观血管重塑
- 批准号:
9263769 - 财政年份:2016
- 资助金额:
$ 22.8万 - 项目类别:
Differential Macro- and Micro-Vascular Remodeling in Type 2 Diabetes and Metabolic Syndrome
2 型糖尿病和代谢综合征的差异性宏观和微观血管重塑
- 批准号:
9252832 - 财政年份:2016
- 资助金额:
$ 22.8万 - 项目类别:
Differential Macro- and Micro-vascular Remodeling in Type 2 Diabetes and Metaboli
2 型糖尿病和代谢的差异性宏观和微观血管重塑
- 批准号:
8635705 - 财政年份:2014
- 资助金额:
$ 22.8万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Discovery Projects
Socially Responsible Insurance in the Age of Artificial Intelligence
人工智能时代的社会责任保险
- 批准号:
LP210200818 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Linkage Projects
PRESAGE - PREdictions and Stimulations related to AGE: capitalizing on artificial intelligence to predict the functional cognitive age of the elderly in order to establish an adequate diagnosis for an optimized cognitive intervention.
PRESAGE - 与 AGE 相关的预测和刺激:利用人工智能预测老年人的功能认知年龄,以便为优化认知干预建立充分的诊断。
- 批准号:
474259 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Fellowship Programs
PRESAGE - PREdictions and Stimulations related to AGE: capitalizing on artificial intelligence to predict the functional cognitive age of seniors in order to establish an adequate diagnosis for an optimized cognitive intervention.
PRESAGE - 与年龄相关的预测和刺激:利用人工智能预测老年人的功能认知年龄,以便为优化认知干预建立充分的诊断。
- 批准号:
476202 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
CyberCorps Scholarship for Service: Cybersecurity Workforce Preparation in the Age of Artificial Intelligence
CyberCorps 服务奖学金:人工智能时代的网络安全劳动力准备
- 批准号:
2146497 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
- 批准号:
2114974 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
Elucidation of age-related macular degeneration pathology by fundus image and cytokine concentrations using artificial intelligence
使用人工智能通过眼底图像和细胞因子浓度阐明年龄相关性黄斑变性病理学
- 批准号:
21K09751 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: EAGER: SaTC-EDU: Safeguarding STEM Education and Scientific Knowledge in the Age of Hyper-Realistic Data Generated Using Artificial Intelligence
合作研究:EAGER:SaTC-EDU:在人工智能生成的超现实数据时代保护 STEM 教育和科学知识
- 批准号:
2039613 - 财政年份:2020
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
An artificial intelligence (AI) Macular Disease treatment decision tool for patients with wet age-related macular degeneration, diabetic macular oedema, and retinal vein occlusion.
一种人工智能 (AI) 黄斑疾病治疗决策工具,适用于患有湿性年龄相关性黄斑变性、糖尿病性黄斑水肿和视网膜静脉阻塞的患者。
- 批准号:
77644 - 财政年份:2020
- 资助金额:
$ 22.8万 - 项目类别:
Collaborative R&D
Collaborative Research: EAGER: SaTC-EDU: Safeguarding STEM Education and Scientific Knowledge in the Age of Hyper-Realistic Data Generated Using Artificial Intelligence
合作研究:EAGER:SaTC-EDU:在人工智能生成的超现实数据时代保护 STEM 教育和科学知识
- 批准号:
2039614 - 财政年份:2020
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant