Boss: A cloud-based data archive for electron microscopy and x-ray microtomography
Boss:用于电子显微镜和 X 射线显微断层扫描的基于云的数据存档
基本信息
- 批准号:9769873
- 负责人:
- 金额:$ 63.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-24 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptionArchitectureArchivesBRAIN initiativeBrainBrain regionClientCollaborationsCollectionCommunitiesComplexComputer softwareCryopreservationDataData AnalyticsData CollectionData QualityData SetData Storage and RetrievalDatabasesDevelopmentDockingElectron MicroscopyEngineeringEnsureEquilibriumFosteringGenerationsGeographyHumanImageImageryImaging TechniquesIndividualIngestionLaboratoriesManualsMapsMemoryMetadataMethodsModalityMusNeuronsNeurosciencesOnline SystemsPerformancePlayPreparationProcessProductionPropertyPythonsReproducibilityResearchResearch PersonnelResolutionRoentgen RaysRoleRunningSamplingSecureServicesSourceStandardizationStructureSystemThree-Dimensional ImageTimeTissuesTrainingUnited States National Institutes of HealthValidationVisualization softwareWorkabstractingapplication programming interfacebrain volumecloud basedcomputerized data processingcomputing resourcescostcost efficientdata accessdata archivedata sharingdesignexperienceexperimental studyfile formatflexibilitygigabytehigh resolution imagingimprovedindexinginstrumentinterestmembermillimetermultimodalityneuroimagingnovelpetabytesearch enginesoftware developmentspatial memorysubmicronterabytetoolweb servicesweb site
项目摘要
Project Abstract
Due to recent technological advances, it is possible to image the high-resolution structure of brain volumes at
spatial extents that are much larger than was previously possible. Emerging X-ray microtomography (XRM)
methods allow for the collection of whole mouse brains in a high-throughput paradigm, permitting the
generation of sub-micron three-dimensional image volumes in less than a day without the alignment
challenges or tissue clearing approaches of other methods. Similarly, electron microscopy (EM) efforts now
routinely exceed 100 terabytes in scale and projects are underway to map cubic millimeters of brain regions,
resulting in petabytes of image and annotation data. Both of these methods are widely used throughout the
BRAIN Initiative and the broader neuroscience community, and the instruments required to collect these
datasets are becoming more common and higher throughput resulting in an increased need for data storage
and archival solutions that can accommodate these larger datasets that are being generated at an increasing
pace. Finally, the sample preparation of XRM and EM are compatible with and amenable to co-registration,
and work is underway to pursue multimodal experiments; new instruments are now available with the ability
to perform both XRM and EM data collection from a single sample.
Existing paradigms for data storage and access are often insufficient to accommodate the required storage,
processing, and dissemination needed to fully exploit the generated data. At this scale, traditional analysis
approaches are often ineffective; for example, it is difficult for a human to view all of data collected or
manually annotate more than a small fraction of the volume. Contemporary analysis approaches leveraging
automated methods require robust and efficient access to data, which can be challenging when managing
massive datasets spread across many files. Without a standard data storage mechanism, data access is
cumbersome, storage is expensive and can lack sufficient durability, metadata is unreliable or unavailable and
may not be attributable in useful ways, and file formats and organization are often different across
laboratories, resulting in a high-barrier for collaboration and sharing.
Thus, we propose the Block and Object Storage Service Database (bossDB) to deliver a high-performance,
cost efficient data archive by utilizing a cloud-based tiered storage architecture, where data is seamlessly
migrated between low cost, durable object storage (i.e., S3) and a fast in-memory spatial data store. This
system will be developed through an agile process that will actively fold in community stakeholders for
regular reviews and continuous opportunities for design input, and will provide and support integration of a
robust suite of user-facing tools that are vital to foster community adoption, such as a web-based
management console and visualization tool, a Python SDK for programmatic access, and a client to facilitate
large-scale ingest of data into the platform. We will build an integrated, managed framework that will enable
compute data quality metrics on large datasets, and a metadata store to capture experimental details, dataset
properties and information about available results. Our approach provides a secure, versioned API to
facilitate programmatic access to data through a standardized and stable interface. For members of the
community who prefer a locally-deployed solution, we will additionally ensure bossDB data storage
capabilities exist in a local (on-premises) deployable version of the archive, and will integrate with the other
major community solution, DVID, which provides complementary capabilities. This proposal will result in a
professionally-engineered, highly-available data archive that provides solutions to many of the barriers
associated with large-scale neuroscience discovery. Through a service-oriented architecture, our approach is
flexible and designed to provide many capabilities to the user while abstracting most of the underlying
technical details so that neuroscientists and data analytics researchers can focus on the scientific questions of
greatest interest. We believe that providing this archive will enable many new experiments in XRM, EM and
mutlimodal approaches, and can be adapted as user and community needs evolve.
项目摘要
由于最近的技术进步,有可能在1000米处对脑体积的高分辨率结构进行成像。
空间范围比以前可能的要大得多。新兴X射线显微断层成像(XRM)
方法允许以高通量范例收集整个小鼠脑,
在不到一天的时间内生成亚微米三维图像体积,
挑战或其他方法的组织清除方法。同样,电子显微镜(EM)的努力,现在
通常超过100太字节的规模和项目正在进行中,以绘制立方毫米的大脑区域,
从而产生PB级的图像和注释数据。这两种方法都广泛应用于
BRAIN Initiative和更广泛的神经科学界,以及收集这些信息所需的工具。
数据集变得越来越普遍,吞吐量也越来越高,这导致对数据存储的需求不断增加
和归档解决方案,这些解决方案可以容纳这些以越来越高的速度生成的大型数据集,
步伐。最后,XRM和EM的样品制备与共配准相容且易于共配准,
目前正在进行多模式实验;新的仪器现在可以使用,
从单个样品中进行XRM和EM数据收集。
现有的数据存储和访问范式通常不足以容纳所需的存储,
处理和传播,以充分利用所产生的数据。在这种规模下,传统的分析
方法通常是无效的;例如,人类很难查看收集的所有数据,
手动注释体积的一小部分以上。利用现代分析方法
自动化方法需要强大而高效的数据访问,这在管理
大量数据集分布在许多文件中。如果没有标准的数据存储机制,
笨重、存储昂贵且缺乏足够的持久性,元数据不可靠或不可用,
可能无法以有用的方式归因,并且文件格式和组织通常在不同的
实验室,导致合作和共享的高壁垒。
因此,我们提出了块和对象存储服务数据库(bossDB),以提供高性能,
通过利用基于云的分层存储体系结构实现经济高效的数据归档,
在低成本、持久的对象存储(即,S3)和快速内存空间数据存储。这
系统将通过敏捷流程开发,该流程将积极融入社区利益相关者,
定期审查和设计输入的持续机会,并将提供和支持
强大的面向用户的工具套件,对于促进社区采用至关重要,例如基于Web的
管理控制台和可视化工具,用于编程访问的Python SDK,以及用于
将大规模数据导入平台。我们将建立一个综合管理的框架,
计算大型数据集上的数据质量指标,以及元数据存储以捕获实验细节、数据集
属性和有关可用结果的信息。我们的方法提供了一个安全的、版本化的API,
通过标准化和稳定的界面,促进对数据的编程访问。成员的
对于更喜欢本地部署解决方案的社区,我们还将确保bossDB数据存储
归档的本地(本地)可部署版本中存在功能,并将与其他版本集成
主要的社区解决方案,DVID,它提供了补充功能。这一提议将导致
经过专业设计的高可用性数据归档,可为许多障碍提供解决方案
与大规模神经科学发现有关。通过面向服务的体系结构,我们的方法是
灵活,旨在为用户提供许多功能,同时抽象大多数底层
技术细节,以便神经科学家和数据分析研究人员可以专注于以下科学问题:
最大的兴趣。我们相信,提供这个档案将使许多新的实验,在XRM,EM和
多模式方法,并可随着用户和社区需求的变化而调整。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BROCK A. WESTER其他文献
BROCK A. WESTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BROCK A. WESTER', 18)}}的其他基金
Boss: A cloud-based data archive for electron microscopy and x-ray microtomography
Boss:用于电子显微镜和 X 射线显微断层扫描的基于云的数据存档
- 批准号:
10664562 - 财政年份:2018
- 资助金额:
$ 63.76万 - 项目类别:
Boss: A cloud-based data archive for electron microscopy and x-ray microtomography
Boss:用于电子显微镜和 X 射线显微断层扫描的基于云的数据存档
- 批准号:
10161834 - 财政年份:2018
- 资助金额:
$ 63.76万 - 项目类别:
Boss: A cloud-based data archive for electron microscopy and x-ray microtomography
Boss:用于电子显微镜和 X 射线显微断层扫描的基于云的数据存档
- 批准号:
10428488 - 财政年份:2018
- 资助金额:
$ 63.76万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 63.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 63.76万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 63.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 63.76万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 63.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 63.76万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 63.76万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 63.76万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 63.76万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 63.76万 - 项目类别:
Standard Grant