A scalable, integrative, multi-omic analysis platform
可扩展、综合、多组学分析平台
基本信息
- 批准号:9769844
- 负责人:
- 金额:$ 22.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-20 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAffectAlgorithmic AnalysisAlgorithmic SoftwareAlgorithmsAllelesArchitectureArithmeticBiological AssayCatalogsChIP-seqCodeCollectionComplexComputer softwareCustomDataData AggregationData AnalyticsData SetDevelopmentDiseaseEnhancersFoundationsFutureGene ExpressionGene Expression RegulationGene FrequencyGenesGeneticGenetic DiseasesGenetic VariationGenetic studyGenomeGenomic SegmentGenomicsGenotypeGenotype-Tissue Expression ProjectHaplotypesHeritabilityHeterozygoteHourHuman GenomeImageryIndividualInternetLightLiquid substanceMetadataMethodsNamesPhasePhenotypePopulationProcessPublishingRare DiseasesResearchResearch TrainingRunningSchemeSequence AlignmentSystemTechnologyTissuesTrainingTrans-Omics for Precision MedicineUtahVariantWorkbasecell typecohortdata integrationdisorder riskepigenomicsexperimental studygenetic variantgenome annotationgenome browsergenome sequencinggenomic dataimprovedindexinginnovationinsightmultidimensional datamultiple omicsnoveloperationprogramsrare variantrisk variantsearch enginestatisticstooltraittranscriptome sequencingweb interfacewhole genome
项目摘要
PROJECT SUMMARY
Despite decades of effort, only a small portion of the heritability of genetic disorders can be currently explained.
Two explanations for this gap are that the underlying genetic variants are rare and currently unknown, and, we
have a poor understanding of the impact of the variants that we do have, in particular those residing outside of
the coding regions. Addressing these issues requires both larger cohorts and more whole-genome functional
assays (e.g RNA-seq, CHiP-seq, ATAC-seq, etc.). In recognition of projects like the Center for Common
Genetic Disorders (CCGD), the Trans-Omics for Precision Medicine (TOPMed) Program and ENCODE are
performing the gathering of massive amounts of genetic data across many different individuals and tissues. In
aggregate, this data will dramatically improve our power to understanding how variation affects genomic
architecture. The challenge is that these data are vast, complex, and multidimensional, and current methods
cannot operate at this scale.
This proposal addresses this challenge by splitting the data into two distinct types of data, genotypes
and genome annotations, and developing technologies that are optimized to store and search each type
independently. These two highly-scalable methods, which will be extremely valuable on their own, will then be
integrated into a single system that enables queries across variation, gene expression, and regulation. For
example, consider the question, “Are there any tissues where de novo variants in case have a differential
enrichment versus those in controls?” This question is decomposed into a genotype query that produces two
sets of variants: de novos in case and de novos in controls. The sets then serve as input queries into a
genome annotation search across all putative enhancers in all tissues.
This proposal builds upon both my recently published Genotype Query Tools (GQT), a method that
achieved vast speedups over other methods by operating directly on a compressed genotype index, and my
past research and training in genome arithmetic algorithms, for which I have published multiple novel
algorithms. Up to now I have focused on methods, so while the K99 phase of this project will include
development, it will have a distinct focus on the analysis of disease cohorts. This additional training will be the
foundation of an independent research program that will unlock the potential of large-scale genomics and
functional data sets, providing for the fast and fluid integration between phenotype, genotype, and functional
data.
项目摘要
尽管经过几十年的努力,目前只有一小部分遗传性疾病的遗传性可以解释。
对这一差距的两种解释是,潜在的遗传变异是罕见的,目前未知,我们
对我们确实拥有的变体的影响了解不多,特别是那些存在于
编码区。解决这些问题既需要更大的群体,也需要更多的全基因组功能。
在一些实施方案中,所述方法可以通过测定(例如RNA-seq、CHiP-seq、ATAC-seq等)来进行。为了表彰像共同发展中心这样的项目,
遗传性疾病(CCGD),精准医学的Trans-Omics(TOPMed)计划和ENCODE
在许多不同的个体和组织中收集大量的遗传数据。在
总的来说,这些数据将大大提高我们理解变异如何影响基因组的能力。
架构挑战在于,这些数据庞大、复杂、多维,而当前的方法
无法在这种规模下运作。
该提案通过将数据分为两种不同类型的数据,基因型,
和基因组注释,并开发优化的技术来存储和搜索每种类型
独立地。这两种高度可扩展的方法本身就非常有价值,
集成到一个单一的系统,使查询跨变异,基因表达和调控。为
例如,考虑这个问题,“是否有任何组织,在这种情况下,新生变异具有差异
与对照组相比,有什么不同?”这个问题被分解为一个基因型查询,
变体集:case中的de novos和control中的de novos。然后,这些集合用作到
在所有组织中的所有推定增强子上进行基因组注释搜索。
这个建议建立在我最近发表的基因型查询工具(GQT),一种方法,
通过直接在压缩的基因型索引上操作,
过去的研究和基因组算术算法的培训,我已经出版了多本小说
算法到目前为止,我一直专注于方法,因此,虽然该项目的K99阶段将包括
在发展过程中,它将明确侧重于对疾病群组的分析。这一额外培训将是
一个独立的研究计划的基础,将释放大规模基因组学的潜力,
功能数据集,提供表型,基因型和功能之间的快速和流体整合
数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan M Layer其他文献
Ryan M Layer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan M Layer', 18)}}的其他基金
Mining Thousands of Genomes to Classify Somatic and Pathogenic Structural Variants
挖掘数千个基因组以对体细胞和致病结构变异进行分类
- 批准号:
10453323 - 财政年份:2022
- 资助金额:
$ 22.36万 - 项目类别:
Mining Thousands of Genomes to Classify Somatic and Pathogenic Structural Variants
挖掘数千个基因组以对体细胞和致病结构变异进行分类
- 批准号:
10709480 - 财政年份:2022
- 资助金额:
$ 22.36万 - 项目类别:
A scalable, integrative, multi-omic analysis platform
可扩展、综合、多组学分析平台
- 批准号:
9295640 - 财政年份:2017
- 资助金额:
$ 22.36万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.36万 - 项目类别:
Research Grant