Actin-based motility of a bacterial pathogen
细菌病原体基于肌动蛋白的运动
基本信息
- 批准号:9903054
- 负责人:
- 金额:$ 27.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAntibodiesAwardBacteriaBacterial GenesBacterial InfectionsBehaviorBiochemicalBiological ModelsBiophysical ProcessBlood - brain barrier anatomyBlood VesselsBrainBypassCell Differentiation processCell LineCell WallCellsCellular StructuresComplexCytoplasmDiffuseDiseaseDissectionDistalElderlyEndothelial CellsEndotheliumEntropyEpithelial CellsFood PoisoningGeneticGoalsGram-Positive BacteriaGrowthHumanImmuneImmune responseImmune systemImmunocompromised HostInfectionIntestinesInvadedLeadListeria monocytogenesListeriosisLiverMediatingMembraneMembrane ProteinsMeningitisMethodsModelingMolecularMolecular GeneticsMovementMusNeoplasm MetastasisNeuraxisNewborn InfantOrganismPathogenesisPathway interactionsPhasePlacentaPregnant WomenProcessPropertyProtein SecretionProteinsResearchRoleSiteSmall Interfering RNASpontaneous abortionStaphylococcus aureusStructureSurfaceSystemTailTestingThickTissuesVirulence FactorsWorkarmbasebiophysical propertiescell motilitycrosslinkfightingfoodborne infectionmacrophagemathematical modelmonolayermouse modelnanoscalepathogenic bacteriaphysical propertypolarized cellpolymerizationpreventreconstitutionscreeningsingle moleculetissue culture
项目摘要
ABSTRACT / PROJECT SUMMARY
Request for 5-year extension of Al - 36929 under MERIT award
Listeria monocytogenes is a ubiquitous Gram-positive bacterium that can cause serious food-borne infections in pregnant women, newborns, and immunocompromised or older adults. From the initial site of Infection in the intestine, the bacteria are able to spread systemically while avoiding the antibody-mediated arm of the hose immune response. These bacteria grow directly in the cytoplasm of infected host cells and move rapidly throughout and between infected cells using a form of actin-based motility. This remarkable ability allows the bacteria to spread from the intestinal epithelial cells into circulating macrophages, which then carry the
bacteria throughout the body and are thought to mediate their spread into distal tissues including the liver, the brain, and the placenta (in pregnant women). The intracellular actin-based motility of L. monocytogenes has served as an important model system for understanding the molecular and biophysical mechanisms of eukaryotic processes driven by actin polymerization, including whole-cell crawling in the immune system and in cancer metastasis. Through our interdisciplinary work involving biochemical reconstitution of motility, biophysical measurement of force-generating processes operating at the bacterial surface, molecular genetic dissection of the bacterial and host contributions to motility, and mathematical modeling of this complex process, we have developed a very detailed understanding of the intracellular motility phase of the infection cycle. In our current work, we are expanding our interdisciplinary analysis to other steps in the infection, including host cell
invasion, bacterial growth and surface polarization, and cell-to-cell spread.
The L. monocytogenes surface protein, ActA, is expressed in a polarized fashion and interacts with host cell cytoskeletal factors to induce the polymerization of an actin "comet tail" structure that pushes the bacterium through the host cell cytoplasm. The interactions between ActA and host cell cytoplasmic factors have been well-studied, but the behavior of ActA itself is less explored. This is a very large intrinsically disordered protein, whose size is such that it should not be able to diffuse through the nanometer-scale pores in the thick, cross-linked Gram-positive bacterial cell wall. Nevertheless, it does extend through the wall while remaining anchored in the membrane. Very recently, we have developed a conceptual breakthrough that can explain quantitative features of ActA translocation as an entropy-driven process. Our new model is highly relevant for surface presentation of other virulence factors in Gram-positive organisms. Over the next five years of this ongoing project, we propose to use L monocytogenes as a genetic system to identify bacterial genes involved in determination of the physical properties of the cell wall (such as thickness and pore size) that govern entropy-driven protein secretion, and expand our analysis to other Gram-positive virulence factors that are structurally related to ActA, particularly in Staphylococcus aureus.
For our studies of invasion and cell-to-cell spread, we are focusing on interactions between L. monocytogenes and the endothelial cells that line blood vessels, as these cells should represent a critical barrier to systemic dissemination of the bacteria. The most likely mechanisms of bypassing the barrier properties of the endothelium include: direct infection of endothelial cells, infection of endothelial cells via cell-to-cell spread from infected circulating immune system cells, and transmigration of infected immune cells across an uninfected endothelium. In tissue culture, we have been able to replicate each of these processes, and have used systematic siRNA screening to identify host cell factors uniquely involved in each step. These initial results have yielded many surprises, and have demonstrated that invasion of endothelial cells is mechanistically distinct from invasion of intestinal epithelial cells. Over the next five years, we propose to continue and expand our molecular dissection of these processes and test the role of the molecules we identify in mouse models of L monocytogenes infection.
摘要/项目摘要
根据优异奖要求将Al-36929延长5年
单核细胞增多性李斯特菌是一种普遍存在的革兰氏阳性细菌,可导致孕妇、新生儿和免疫低下或老年人的严重食源性感染。从肠道的最初感染部位开始,细菌能够在避开抗体介导的软管免疫反应的同时进行系统传播。这些细菌直接生长在感染宿主细胞的细胞质中,并利用一种基于肌动蛋白的运动形式在感染细胞内和感染细胞之间快速移动。这种非凡的能力使细菌能够从肠道上皮细胞传播到循环中的巨噬细胞,然后巨噬细胞携带
细菌遍布全身,被认为是它们传播到远端组织的媒介,包括肝脏、大脑和胎盘(在孕妇中)。单核细胞增生性李斯特氏菌基于肌动蛋白的细胞内运动已成为了解肌动蛋白聚合所驱动的真核过程的分子和生物物理机制的重要模型系统,包括免疫系统中的全细胞爬行和肿瘤转移。通过我们的跨学科工作,包括动力的生化重建,对细菌表面作用力过程的生物物理测量,对细菌和宿主对动力的贡献的分子遗传解剖,以及对这一复杂过程的数学建模,我们已经对感染周期的细胞内动力阶段有了非常详细的理解。在我们目前的工作中,我们正在将我们的跨学科分析扩展到感染的其他步骤,包括宿主细胞
入侵、细菌生长和表面极化,以及细胞到细胞的传播。
单核细胞增多性李斯特菌表面蛋白ActA以极化方式表达,并与宿主细胞细胞骨架因子相互作用,诱导肌动蛋白“彗星尾”结构聚合,推动细菌穿过宿主细胞细胞质。ActA和宿主细胞胞质因子之间的相互作用已经得到了很好的研究,但ActA本身的行为却很少被探索。这是一种非常大的天生无序的蛋白质,其大小不应该能够通过厚厚的、交联的革兰氏阳性细菌细胞壁中的纳米级毛孔扩散。尽管如此,它确实延伸到了壁上,同时仍固定在膜上。最近,我们在概念上取得了突破,可以将ActA易位的数量特征解释为一个由熵驱动的过程。我们的新模型与革兰氏阳性生物中其他毒力因子的表面呈现高度相关。在这个正在进行的项目的接下来的五年里,我们建议使用L单核细胞增多症作为一个遗传系统来识别参与决定细胞壁物理性质(如厚度和孔径)的细菌基因,这些基因控制着熵驱动的蛋白质分泌,并将我们的分析扩展到其他与ActA结构相关的革兰氏阳性毒力因子,特别是在金黄色葡萄球菌中。
在我们对入侵和细胞间传播的研究中,我们专注于单核细胞增多性乳杆菌与血管内皮细胞之间的相互作用,因为这些细胞应该是细菌系统性传播的关键屏障。绕过内皮屏障特性的最可能的机制包括:内皮细胞的直接感染,受感染的循环免疫系统细胞通过细胞间传播感染内皮细胞,以及受感染的免疫细胞跨未感染的内皮细胞的迁移。在组织培养中,我们已经能够复制这些过程中的每一个,并使用系统的siRNA筛选来识别在每个步骤中唯一涉及的宿主细胞因子。这些初步结果已经产生了许多令人惊讶的结果,并证明了内皮细胞的侵袭与肠上皮细胞的侵袭在机制上是不同的。在接下来的五年里,我们建议继续并扩大我们对这些过程的分子解剖,并测试我们识别的分子在L单核细胞增多症小鼠模型中的作用。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imaging techniques in microbiology.
微生物学中的成像技术。
- DOI:10.1016/s1369-5274(98)80040-4
- 发表时间:1998
- 期刊:
- 影响因子:5.4
- 作者:Fung,DC;Theriot,JA
- 通讯作者:Theriot,JA
Actin filament dynamics in cell motility.
细胞运动中的肌动蛋白丝动力学。
- DOI:10.1007/978-1-4615-2578-3_13
- 发表时间:1994
- 期刊:
- 影响因子:0
- 作者:Theriot,JA
- 通讯作者:Theriot,JA
Listeria monocytogenes-based assays for actin assembly factors.
基于单核细胞增生李斯特氏菌的肌动蛋白组装因子测定。
- DOI:10.1016/s0076-6879(98)98013-2
- 发表时间:1998
- 期刊:
- 影响因子:0
- 作者:Theriot,JA;Fung,DC
- 通讯作者:Fung,DC
The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin.
- DOI:10.1083/jcb.135.3.647
- 发表时间:1996-11
- 期刊:
- 影响因子:7.8
- 作者:Smith, GA;Theriot, JA;Portnoy, DA
- 通讯作者:Portnoy, DA
Decoupling the coupling: surface attachment in actin-based motility.
解耦耦合:基于肌动蛋白的运动中的表面附着。
- DOI:10.1021/cb700071d
- 发表时间:2007
- 期刊:
- 影响因子:4
- 作者:Tsuchida,MarkA;Theriot,JulieA
- 通讯作者:Theriot,JulieA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JULIE A. THERIOT其他文献
JULIE A. THERIOT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JULIE A. THERIOT', 18)}}的其他基金
Surface protein dynamics in live bacterial pathogens
活细菌病原体的表面蛋白动力学
- 批准号:
7169569 - 财政年份:2006
- 资助金额:
$ 27.76万 - 项目类别:
Surface protein dynamics in live bacterial pathogens
活细菌病原体的表面蛋白动力学
- 批准号:
7559648 - 财政年份:2006
- 资助金额:
$ 27.76万 - 项目类别:
Surface protein dynamics in live bacterial pathogens
活细菌病原体的表面蛋白动力学
- 批准号:
7766299 - 财政年份:2006
- 资助金额:
$ 27.76万 - 项目类别:
Surface protein dynamics in live bacterial pathogens
活细菌病原体的表面蛋白动力学
- 批准号:
7019036 - 财政年份:2006
- 资助金额:
$ 27.76万 - 项目类别:
Surface protein dynamics in live bacterial pathogens
活细菌病原体的表面蛋白动力学
- 批准号:
7346953 - 财政年份:2006
- 资助金额:
$ 27.76万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Research Grant














{{item.name}}会员




