A Machine Learning Approach For CTA-based Plaque Characterization and Stroke Risk Prediction in Carotid Artery Atherosclerosis

基于 CTA 的颈动脉粥样硬化斑块表征和中风风险预测的机器学习方法

基本信息

  • 批准号:
    9904175
  • 负责人:
  • 金额:
    $ 12.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Carotid artery atherosclerosis is a major vascular risk factor and accounts for approximately 15% of all strokes. A major risk marker in patients with carotid atherosclerosis has been the degree of narrowing, or stenosis, of the carotid artery lumen. While stenosis is often quantified via angiography, imaging can also provide detailed assessments of plaque. Our project is motivated by converging data that correlate vulnerable plaque elements, which can be captured with imaging, with increased stroke risk. Identifying high-risk or vulnerable carotid plaques before a stroke occurs is important because stroke prevention treatments, like carotid endarterectomy or stenting, carry risks and ideally should only be performed only those patients at highest risk of stroke. CTA (computed tomographic angiography) is an attractive tool for plaque imaging since it is not operator dependent, can be quickly performed, and is more widely available than MRI. Although CTA offers significant potential to evaluate these plaque features, small studies have not reached a consensus regarding their reliability and clinical relevance. In this project, we plan to explore the utility of CTA for the detailed carotid vessel wall imaging by employing a unique, large-scale clinical dataset and advanced algorithms. Our overarching objective in this R21 project is to conduct developmental and interdisciplinary research that will lay the foundation for the implementation and validation of novel CTA-based technologies that can be adopted in the risk stratification of patients with carotid atherosclerosis. Our central hypothesis is that there are CTA-based carotid plaque features that can be reliably extracted and used for stroke risk stratification, which will be more sensitive and specific than standard stenosis grading. To pursue our objective, we will pursue two specific aims: In Specific Aim 1 we plan to optimize the use of human reader defined plaque features in predicting culprit carotid plaques. We will perform a blinded, multi-reader study of CTA-derived carotid plaque features in a large scale clinical dataset to test the association between CTA-derived human-defined features and stroke, and compute accuracy metrics. In Specific Aim 2, we plan to develop algorithms to automatically characterize and discriminate culprit carotid plaque in CTA. We will implement and test image processing algorithms that automatically compute from a CTA scan stroke-associated carotid artery plaque features (from Aim 1), and then train a machine learning algorithm to distinguish culprit from asymptomatic carotid artery plaques. We believe that this R21 study is significant because it will establish a novel, machine learning-aided imaging strategy which can aid in identifying high-risk carotid artery plaques before they cause stroke and when they can be properly treated to prevent stroke from occurring in the future.
项目总结/摘要 颈动脉粥样硬化是一种主要的血管危险因素,约占所有中风的15%。 颈动脉粥样硬化患者的一个主要风险标志是颈动脉狭窄或狭窄程度, 颈动脉腔虽然狭窄通常通过血管造影术量化,但成像也可以提供详细的 斑块的评估。我们的项目的动机是汇集与脆弱斑块元素相关的数据, 这可以通过成像来捕捉,增加了中风的风险。识别高危或脆弱的颈动脉 在中风发生前发现斑块非常重要,因为中风预防治疗,如颈动脉内膜切除术, 或支架植入术具有风险,理想情况下,仅应仅对中风风险最高的患者进行。CTA (计算机断层摄影血管造影术)是用于斑块成像的有吸引力的工具,因为它不依赖于操作者, 可以快速进行,并且比MRI更广泛地使用。虽然CTA提供了巨大的潜力, 评估这些斑块特征,小型研究尚未就其可靠性达成共识, 临床相关性在这个项目中,我们计划探索CTA对详细颈动脉血管壁的实用性 通过采用独特的大规模临床数据集和先进算法进行成像。我们的总体 在这个R21项目的目标是进行发展和跨学科的研究,将奠定 为实施和验证新的基于CTA的技术奠定了基础,这些技术可以在 颈动脉粥样硬化患者的危险分层。我们的中心假设是,有基于CTA的 颈动脉斑块特征可以可靠地提取并用于中风风险分层,这将是更多 比标准狭窄分级更敏感和特异。为了实现我们的目标,我们将寻求两个具体的 目的:在具体目标1中,我们计划优化人类读者定义的斑块特征在预测中的使用。 罪魁祸首颈动脉斑块我们将进行一项关于CTA衍生的颈动脉斑块特征的盲法、多读者研究, 大规模临床数据集,用于测试CTA衍生的人类定义特征与卒中之间的关联, 并计算准确度指标。在具体目标2中,我们计划开发算法来自动表征 并在CTA中鉴别颈动脉斑块。我们将实现和测试图像处理算法, 根据CTA扫描自动计算中风相关的颈动脉斑块特征(来自Aim 1),以及 然后训练机器学习算法来区分罪魁祸首和无症状的颈动脉斑块。我们 我相信这项R21研究意义重大,因为它将建立一种新的机器学习辅助成像技术。 一种策略,可以帮助识别高风险的颈动脉斑块之前,他们导致中风,当他们 可以得到适当的治疗,以防止将来发生中风。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajay Gupta其他文献

Ajay Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ajay Gupta', 18)}}的其他基金

Development of a dry powder inhalation product against Respiratory Syncytial Virus based on an endogenous anionic pulmonary surfactant lipid
基于内源性阴离子肺表面活性剂脂质的抗呼吸道合胞病毒干粉吸入产品的开发
  • 批准号:
    10697027
  • 财政年份:
    2023
  • 资助金额:
    $ 12.2万
  • 项目类别:
Quantitative susceptibility mapping for stroke risk prediction of vulnerable carotid plaques
用于预测易损颈动脉斑块中风风险的定量敏感性图
  • 批准号:
    10446087
  • 财政年份:
    2022
  • 资助金额:
    $ 12.2万
  • 项目类别:
Quantitative Susceptibility Mapping for Stroke Risk Prediction of Vulnerable Carotid Plaques
用于预测易损颈动脉斑块中风风险的定量敏感性图
  • 批准号:
    10609912
  • 财政年份:
    2022
  • 资助金额:
    $ 12.2万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10622513
  • 财政年份:
    2021
  • 资助金额:
    $ 12.2万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10317631
  • 财政年份:
    2021
  • 资助金额:
    $ 12.2万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10471976
  • 财政年份:
    2021
  • 资助金额:
    $ 12.2万
  • 项目类别:
MRI Detection of CarotId Plaques as a mecHanism for Embolic strokes of undeteRmined source (MRI DECIPHER)
颈动脉斑块的 MRI 检测作为不明原因栓塞性中风的机制(MRI DECIPHER)
  • 批准号:
    10204095
  • 财政年份:
    2019
  • 资助金额:
    $ 12.2万
  • 项目类别:
MRI Detection of CarotId Plaques as a mecHanism for Embolic strokes of undeteRmined source (MRI DECIPHER)
颈动脉斑块的 MRI 检测作为不明原因栓塞性中风的机制(MRI DECIPHER)
  • 批准号:
    10661676
  • 财政年份:
    2019
  • 资助金额:
    $ 12.2万
  • 项目类别:
MRI Detection of CarotId Plaques as a mecHanism for Embolic strokes of undeteRmined source (MRI DECIPHER)
颈动脉斑块的 MRI 检测作为不明原因栓塞性中风的机制(MRI DECIPHER)
  • 批准号:
    10449116
  • 财政年份:
    2019
  • 资助金额:
    $ 12.2万
  • 项目类别:
Parallel Algorithms for Big Data from Mass Spectrometry based Proteomics
基于质谱的蛋白质组学大数据并行算法
  • 批准号:
    9301702
  • 财政年份:
    2017
  • 资助金额:
    $ 12.2万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 12.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了