Parallel Algorithms for Big Data from Mass Spectrometry based Proteomics

基于质谱的蛋白质组学大数据并行算法

基本信息

  • 批准号:
    9301702
  • 负责人:
  • 金额:
    $ 41.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The goal of the proposed project is to develop core algorithms, techniques and software libraries to enable scalable, efficient and parallel computing solutions for mass spectrometry (MS) based high-throughput proteomics data sets. To empower the larger proteomics community and experimental biologist the project seeks to 1) identify a set of core methods that are frequently used by proteomics practitioners 2) develop efficient and scalable parallel algorithms and implementations for these methods 3) pursue mapping of these parallel computing techniques to a wide variety of architectures such as multicores, manycores, distributed clusters, GPU’s and FPGA’s 4) design and implement big data analytic techniques that can be used in our HPC implementation as well as used by other researchers for sequential and/or parallel algorithms 5) design interfaces using Galaxy framework for these parallel programs so that they can be used by non-experts and people who are not familiar with parallel processing. The research will be conducted in collaboration with domain experts in systems biology and proteomics. The specific problems that will be targeted are parallel algorithms for clustering of MS data sets, parallel algorithms for identifying peptides using databases from these MS data sets using multicore and GPU’s and high performance algorithms that can make sense out of these MS data sets in a denovo fashion without a need for a database. The parallel algorithms will be tested using simulated as well as real experimental data sets and will be available for free academic use.
项目总结/摘要 该项目的目标是开发核心算法、技术和软件库 为基于质谱分析(MS)的应用提供可扩展、高效和并行的计算解决方案 高通量蛋白质组学数据集。为了使更大的蛋白质组学社区和 实验生物学家该项目旨在1)确定一套核心方法, 2)开发高效和可扩展的并行算法, 3)追求将这些并行计算技术映射到 各种各样的架构,如多核、众核、分布式集群、GPU和 FPGA的4)设计和实现可用于我们HPC的大数据分析技术 实现以及其他研究人员用于顺序和/或并行算法5) 使用Galaxy框架为这些并行程序设计接口,以便它们可以被 非专家和不熟悉并行处理的人。这项研究将 与系统生物学和蛋白质组学领域专家合作进行。具体 将针对的问题是MS数据集的聚类的并行算法,并行 使用来自这些MS数据集的数据库,使用多核和 GPU和高性能算法,可以从这些MS数据集中重新获得意义 不需要数据库。并行算法将使用模拟的 以及真实的实验数据集,并将可供免费学术使用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data
  • DOI:
    10.3389/fninf.2019.00070
  • 发表时间:
    2019-11-27
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Eslami, Taban;Mirjalili, Vahid;Saeed, Fahad
  • 通讯作者:
    Saeed, Fahad
Deep Learning-based MSMS Spectra Reduction in Support of Running Multiple Protein Search Engines on Cloud.
Deep vs. Shallow Learning-based Filters of MSMS Spectra in Support of Protein Search Engines.
深度与基于浅层学习的MSMS光谱过滤器支持蛋白质搜索引擎。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ajay Gupta其他文献

Ajay Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ajay Gupta', 18)}}的其他基金

Development of a dry powder inhalation product against Respiratory Syncytial Virus based on an endogenous anionic pulmonary surfactant lipid
基于内源性阴离子肺表面活性剂脂质的抗呼吸道合胞病毒干粉吸入产品的开发
  • 批准号:
    10697027
  • 财政年份:
    2023
  • 资助金额:
    $ 41.85万
  • 项目类别:
Quantitative susceptibility mapping for stroke risk prediction of vulnerable carotid plaques
用于预测易损颈动脉斑块中风风险的定量敏感性图
  • 批准号:
    10446087
  • 财政年份:
    2022
  • 资助金额:
    $ 41.85万
  • 项目类别:
Quantitative Susceptibility Mapping for Stroke Risk Prediction of Vulnerable Carotid Plaques
用于预测易损颈动脉斑块中风风险的定量敏感性图
  • 批准号:
    10609912
  • 财政年份:
    2022
  • 资助金额:
    $ 41.85万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10622513
  • 财政年份:
    2021
  • 资助金额:
    $ 41.85万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10317631
  • 财政年份:
    2021
  • 资助金额:
    $ 41.85万
  • 项目类别:
Understanding the dynamic interactions between tau pathology and microgliamediated inflammation in Alzheimer's Disease
了解阿尔茨海默病中 tau 蛋白病理学与小胶质细胞介导的炎症之间的动态相互作用
  • 批准号:
    10471976
  • 财政年份:
    2021
  • 资助金额:
    $ 41.85万
  • 项目类别:
MRI Detection of CarotId Plaques as a mecHanism for Embolic strokes of undeteRmined source (MRI DECIPHER)
颈动脉斑块的 MRI 检测作为不明原因栓塞性中风的机制(MRI DECIPHER)
  • 批准号:
    10204095
  • 财政年份:
    2019
  • 资助金额:
    $ 41.85万
  • 项目类别:
A Machine Learning Approach For CTA-based Plaque Characterization and Stroke Risk Prediction in Carotid Artery Atherosclerosis
基于 CTA 的颈动脉粥样硬化斑块表征和中风风险预测的机器学习方法
  • 批准号:
    9904175
  • 财政年份:
    2019
  • 资助金额:
    $ 41.85万
  • 项目类别:
MRI Detection of CarotId Plaques as a mecHanism for Embolic strokes of undeteRmined source (MRI DECIPHER)
颈动脉斑块的 MRI 检测作为不明原因栓塞性中风的机制(MRI DECIPHER)
  • 批准号:
    10661676
  • 财政年份:
    2019
  • 资助金额:
    $ 41.85万
  • 项目类别:
MRI Detection of CarotId Plaques as a mecHanism for Embolic strokes of undeteRmined source (MRI DECIPHER)
颈动脉斑块的 MRI 检测作为不明原因栓塞性中风的机制(MRI DECIPHER)
  • 批准号:
    10449116
  • 财政年份:
    2019
  • 资助金额:
    $ 41.85万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 41.85万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 41.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了