Investigating Cell-Wall Synthesis in Mycobacterium abscessus
研究脓肿分枝杆菌细胞壁的合成
基本信息
- 批准号:9905835
- 负责人:
- 金额:$ 5.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAllelesAmino Acid SequenceAmino AcidsAntibioticsBacteriaBindingBiogenesisBiological AssayBiological ProcessBiologyCRISPR interferenceCell WallCell divisionCellsCellular StructuresCo-ImmunoprecipitationsComplexCoupledDataDefectDevelopmentDiseaseDrug TargetingEnzymesFoundationsGeneticGenus MycobacteriumGrowthHigh-Throughput Nucleotide SequencingHomologous GeneImmunocompromised HostImmunoprecipitationImpairmentIncidenceInfectionKnowledgeLife Cycle StagesLipoprotein BindingLiquid substanceLungLung diseasesMicroscopyMorphologyMutagenesisMycobacterium abscessusMycobacterium tuberculosisPathogenicityPatientsPenicillinsPeptidoglycanPeptidyltransferasePhysiologyPlayProcessProteinsRepressionResistanceResourcesRoleSkin TissueSoft Tissue InfectionsSolidSpecificityStructure of parenchyma of lungTestingTimeTransmembrane DomainWorkbasecell growthcrosslinkexperimental studygene synthesisgenome-wideinsightknock-downmycobacterialnew therapeutic targetnon-tuberculosis mycobacterianovel therapeuticsoverexpressionprotein complexprotein functiontime use
项目摘要
Project Summary/Abstract
Mycobacterium abscessus (Mab) is a rapidly growing non-tuberculous mycobacterium (NTM) that causes
a wide range of illnesses including lung, skin and soft-tissue infections, as well as disseminated disease.
Treatment of Mab infections is difficult because the bacterium is intrinsically resistant to many classes of
antibiotics. Thus, there is a need to develop new therapies against Mab infection. The mycobacterial cell wall is
a popular target for antibiotics as its biogenesis is essential for bacterial growth. While cell wall synthesis has
been extensively studied in M. tuberculosis (Mtb), relatively little is known about how Mab builds its cell wall and
how this process differs from Mtb’s. To identify components of cell wall synthesis with unique roles in Mab
physiology, I performed genome-wide transposon mutagenesis coupled with high throughput-sequencing on
Mab. I then compared the essentiality of cell wall enzymes between Mab and Mtb. The data reveals Mab3167c,
a predicted penicillin-binding-lipoprotein (PBP-lipo), as being essential in Mab, while its homolog in Mtb is non-
essential. Mab3167c is predicted to be a transpeptidase that cross-links segments of the foundational
peptidoglycan (PG) layer of the cell wall. My preliminary data shows that repressing PBP-lipo impairs bacterial
growth and leads to gross morphological abnormalities in the cell. Given that PG synthesis has not been studied
in Mab, nor has the function of PBP-lipo, this proposal seeks to answer two central questions: 1) What is the role
of PBP-lipo in Mab PG synthesis? and 2) What cell wall enzymes genetically and physically interact with PBP-
lipo in Mab? Aim 1 interrogates the localization and function of PBP-lipo during PG synthesis using time-lapse
microscopy. With this approach, I will determine in real time where PBP-lipo localizes in the cell and assess how
its depletion influences PG synthesis. Aim 2 seeks to identify the functional genetic and physical network of
PBP-lipo in Mab. Previous work from our lab demonstrated that Mtb cell wall enzymes have unique sets of
genetic interactions and work in protein complexes to coordinate PG synthesis in a spatially and temporarily
coordinated manner. Using CRISPR-interference, I will knock down cell wall enzymes in combination with PBP-
lipo to determine which pairs genetically interact. I will also perform immunoprecipitation assays to identify
putative binding partners of PBP-lipo. All together, this work will elucidate when and where PBP-lipo functions in
the cell as well as illuminate how this enzyme contributes to PG synthesis. Moreover, this work will identify cell
wall synthesis genes that genetically interact with PBP-lipo as well as uncover proteins that function in complex
with the enzyme. These experiments will help uncover the specificities of Mab PG synthesis and cell wall
construction. Ultimately, my findings will not only advance the knowledge of cell wall biology in NTMs, but also
provide key insights into new drug targets and inform the development of successful treatments for Mab infection.
!
!
项目摘要/摘要
脓肿分枝杆菌(MAB)是一种迅速生长的非结核分枝杆菌(NTM)
各种各样的疾病,包括肺,皮肤和软组织感染以及传播疾病。
MAB感染的治疗很困难,因为细菌对许多类别具有抗性
抗生素。那是有必要开发针对MAB感染的新疗法。分枝杆菌细胞壁是
一个流行的抗生素靶标,因为其生物发生对于细菌生长至关重要。而细胞壁合成具有
在结核分枝杆菌(MTB)中广泛研究了,关于mab如何建造其细胞壁和
这个过程与MTB的不同。识别在mAb中具有独特作用的细胞壁合成组件
生理学,我进行了全基因组的转座子诱变,并在高吞吐量上进行
mab。然后,我比较了mAb和MTB之间细胞壁酶的重要性。数据揭示了MAB3167C,
预测的青霉素结合脂蛋白(PBP-LIPO)在mAb中是必不可少的,而其MTB中的同源物是非 -
基本的。 MAB3167C被预测是一种交叉链接段的转肽酶
细胞壁的肽聚糖(PG)层。我的初步数据表明,反映PBP-LIPO会损害细菌
生长并导致细胞中的形态异常。鉴于PG合成尚未研究
在mab中,PBP-Lipo的功能也没有,该提议试图回答两个中心问题:1)
MAB PG合成中的PBP-LIPO? 2)哪种细胞壁在遗传和物理上与PBP-
mab中的Lipo? AIM 1使用延时质疑PB-LIPO在PG合成过程中的定位和功能
显微镜。通过这种方法,我将实时确定PBP-LIPO在细胞中定位并评估如何
它的耗竭会影响PG合成。 AIM 2试图确定功能性遗传和物理网络
mab中的pbp-lipo。我们实验室的先前工作表明,MTB细胞壁酶具有独特的集合
遗传相互作用和蛋白质复合物中的工作,以在空间和临时的
协调的方式。使用CRISPR干预,我将结合PBP-将细胞壁酶击倒
LIPO确定哪种对遗传相互作用。我还将执行免疫沉淀测定法以识别
PBP-LIPO的推定结合伙伴。总之,这项工作将阐明pbp-lipo在何时何地在
细胞以及该酶如何促进PG合成。而且,这项工作将识别细胞
壁合成基因与PBP-LIPO以及发现在复合物中起作用的蛋白质相互作用
与酶。这些实验将有助于发现MAB PG合成和细胞壁的规格
建造。最终,我的发现不仅会推进NTM中细胞壁生物学的知识,而且还会推进
提供有关新药物靶标的关键见解,并为成功的MAB感染的成功疗法提供开发。
呢
呢
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chidiebere Akusobi其他文献
Chidiebere Akusobi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chidiebere Akusobi', 18)}}的其他基金
Investigating Cell-Wall Synthesis in Mycobacterium abscessus
研究脓肿分枝杆菌细胞壁的合成
- 批准号:
10116157 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms for cellular copper import via secreted cuproproteins
通过分泌铜蛋白输入细胞铜的机制
- 批准号:
10669776 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
Origins of DNA damage driving pathology in human neurodegeneration
DNA损伤驱动人类神经变性病理学的起源
- 批准号:
10569616 - 财政年份:2022
- 资助金额:
$ 5.05万 - 项目类别:
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10532793 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
Defining the mechanisms of nuclear pore complex assembly in fission yeast
定义裂殖酵母核孔复合体组装的机制
- 批准号:
9909195 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10316181 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别: