T-cell Biofactories for targeting interstitial fluid pressure
针对间质液压力的 T 细胞生物工厂
基本信息
- 批准号:9906864
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-04 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiological AssayBiological AvailabilityBiological MarkersBiologyBlood CirculationBreastCCL4 geneCachexiaCalciumCalcium ChannelCellsClinicColonConnective TissueCuesCytotoxic T-LymphocytesDesmoplasticDiseaseDisease modelDrug resistanceEngineeringEnvironmentEnzymesExtracellular MatrixFDA approvedGlycoside HydrolasesGoalsGrowthHalf-LifeHyaluronanHyaluronidaseImmune systemImmunosuppressionImmunotherapyImpairmentIn SituIn VitroInfusion proceduresIntercellular FluidInvestigationIon ChannelKnowledgeLaboratoriesLeadLightMalignant NeoplasmsMalignant neoplasm of pancreasMissionMolecularMonitorNormal tissue morphologyOutcomeOvarianPancreasPancreatic Ductal AdenocarcinomaPathologyPerfusionPhaseProstateProteinsPublic HealthResearchResearch PersonnelResistance developmentSafetySignal PathwaySignal TransductionSiteSolid NeoplasmSourceStomachStressT-Cell ActivationT-LymphocyteTRPV1 geneTechnologyTherapeuticTissuesToxic effectTranscriptional ActivationTreatment outcomeTumor PathologyWorkantitumor agentbasecancer therapychemotherapydosageengineered T cellsenzyme therapyimprovedin vivoinnovationmolecular markerneoplastic cellpressureresponserituximabside effectskeletalstandard of caresuccesstechnology developmenttransgene expressiontumortumor microenvironment
项目摘要
PROJECT SUMMARY
The focus of this proposal is to develop pressure-sensitive T cells that can activate in response to the high
interstitial fluid pressure (IFP) in many solid tumors and release an engineered enzyme to neutralize its source.
The dense fibrous extracellular matrix (ECM) tissue growth common in many solid tumors presents a physical
barrier to the current standard of care chemotherapies and immunotherapies. It leads to the compressive
stresses that cause high interstitial fluid pressure (IFP) (>100 mmHg) as compared to that within normal
tissues (-4 to -6 mmHg). Together, the ECM barrier and IFP resist the influx of therapeutics into tumor sites.
The ECM also harbors the tumor microenvironment (TME) that causes drug resistance and
immunosuppression. Hence, the challenge is to selectively break down the ECM at the tumor site to enable the
entry of therapeutic cytolytic T cells without affecting the normal connective tissues. Here, the investigators
propose that T cells can be engineered to provide a solution to this challenge by selectively degrading the
ECM. The investigators' long-term goal is to develop new treatments by harnessing the cell's potential to
interact with the in vivo environment and target the underlying mechanisms in the disease pathology. The
objective of this project, toward this long-term goal, is to engineer the T cells to synthesize and release the
ECM degrading enzymes upon sensing increased IFP. To achieve this objective, their strategy is to engineer
the T cells with an artificial cell signaling cascade that upregulates the desired proteins in situ. This work is
supported by their preliminary work on engineering the T cells and use of a new assay to simulate IFP in vitro.
The rationale for this effort is that it will lead to a cellular technology to locally disrupt the tumor ECM and
reduce IFP to assist the influx of antitumor agents for improved treatment outcome. The investigators have
described specific milestones with quantitative metric of success and will use the following parallel aims to
conduct the investigations: Engineering of T cells with pressure-sensitive trigger (Aim 1); Engineering of T cell
for pressure-induced expression of ECM degrading enzyme (Aim 2). This effort is expected to lead to a broad-
spectrum technology that has the potential for high-impact. This is because there is no known molecular
biomarker to target either the ECM or IFP. The proposed approach is innovative because it challenges the
status quo by engineering the T cells to actively traffic to the TME and synthesize an ECM-degrading enzyme
in situ. This will mitigate the IFP and enable perfusion of engineered cytolytic T cells to kill tumor cells; as well
as alter the continuously evolving TME to overcome drug resistance and immunosuppression.
项目摘要
该提案的重点是开发压力敏感性T细胞,这些细胞可以响应高血压而激活。
在许多实体瘤中,肿瘤细胞会释放间质液压力(IFP),并释放工程酶来中和其来源。
在许多实体瘤中常见的致密纤维细胞外基质(ECM)组织生长呈现出物理性的肿瘤生长。
目前标准的化疗和免疫治疗的障碍。它导致了压缩
与正常范围内相比,导致高组织间液压力(IFP)(>100 mmHg)的应力
组织(-4至-6 mmHg)。ECM屏障和IFP共同抵抗治疗剂流入肿瘤部位。
ECM还含有肿瘤微环境(TME),其引起耐药性,
免疫抑制因此,挑战是选择性地分解肿瘤部位的ECM,以使肿瘤细胞能够在肿瘤组织中生长。
治疗性溶细胞T细胞的进入而不影响正常结缔组织。在这里,调查人员
提出T细胞可以通过选择性地降解T细胞来提供解决这一挑战的方案。
ECM。研究人员的长期目标是通过利用细胞的潜力来开发新的治疗方法,
与体内环境相互作用并靶向疾病病理学中的潜在机制。的
这个项目的目标,朝着这个长期目标,是设计T细胞合成和释放
ECM降解酶在感测增加的IFP时。为了实现这一目标,他们的策略是设计
T细胞具有人工细胞信号级联,原位上调所需蛋白质。这项工作是
他们的初步工作支持工程化T细胞和使用一种新的测定法来模拟IFP在体外。
这项工作的基本原理是,它将导致细胞技术局部破坏肿瘤ECM,
减少IFP以帮助抗肿瘤剂的流入,从而改善治疗结果。调查人员已
描述了具体的里程碑和成功的量化指标,并将使用以下平行目标,
进行研究:具有压力敏感触发的T细胞工程(目标1); T细胞工程
用于压力诱导ECM降解酶的表达(Aim 2)。预计这一努力将导致广泛的-
频谱技术,具有潜在的高影响力。这是因为没有已知的分子
靶向ECM或IFP的生物标志物。所提出的方法是创新的,因为它挑战了
通过工程化T细胞以主动运输至TME并合成ECM降解酶,
在原地。这将减轻IFP并使工程化的溶细胞T细胞能够灌注以杀死肿瘤细胞;以及
如改变持续进化的TME以克服耐药性和免疫抑制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Parijat Bhatnagar其他文献
Parijat Bhatnagar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Parijat Bhatnagar', 18)}}的其他基金
Cellular biofactories for therapeutic protein synthesis in tumor microenvironment
肿瘤微环境中治疗性蛋白质合成的细胞生物工厂
- 批准号:
9114273 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 26万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 26万 - 项目类别:
Postdoctoral Fellowships