The roles of lipid metabolism in the maintenance of hematopoietic stem cells
脂质代谢在造血干细胞维持中的作用
基本信息
- 批准号:9906877
- 负责人:
- 金额:$ 37.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAdipose tissueAutophagocytosisBehaviorBiological AssayBiological MarkersBiosensorBone MarrowCarnitine Palmitoyltransferase ICell MaintenanceCell divisionCellsCellular AssayClinicalCuesDataEmbryoEnvironmentEnzymesEquilibriumEventFatty AcidsGene ExpressionGenesGenetic ModelsGoalsHematological DiseaseHematopoieticHematopoietic Stem Cell ResearchHematopoietic Stem Cell TransplantationHematopoietic stem cellsHeterogeneityHomeostasisImageIn VitroIndividualKnockout MiceKnowledgeLipaseLipidsMaintenanceMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMicroscopeMitochondriaMolecularMonitorMusNADPNatural graphiteNon-MalignantNonesterified Fatty AcidsOutcomePathway interactionsPatternPlayPopulationProcessProductionRegimenResearchRoleSolidSourceSystemTechniquesTestingTimeTransplantationWorkbasebioinformatics toolcell behaviorclinical practiceconditional knockoutdaughter cellfatty acid metabolismfatty acid oxidationhematopoietic stem cell expansionhematopoietic stem cell fatehematopoietic stem cell self-renewalimage guidedimprovedin vivoinnovationinsightlipid metabolismmetabolomemetabolomicsmitochondrial metabolismmultiphoton microscopynovel therapeuticspreventprospectiveself-renewalstem cell biologystem cell divisionstem cellstranscriptometranscriptomics
项目摘要
ABSTRACT
The symmetry of stem cell division is one of the most fundamental questions in stem cell biology, and a leading
goal of our research is identification of the key metabolic pathways that regulate hematopoietic stem cell (HSC)
fate. We hypothesize that lipid metabolism contributes to HSC maintenance through precise control of division
patterns. Single-cell approaches have identified the enhanced clearance of damaged mitochondria by fatty acid
oxidation as an important mechanism of the self-renewing expansion of HSCs. However, our understanding of
the relationship between HSC self-renewal and lipid metabolism is limited, as analyses of individual HSC division
patterns have been hindered by both the heterogeneity of available HSC-enriched fractions and the technical
challenges of imaging HSC fate in vivo. In addition, the number of cells required for full metabolomics analysis
of rare populations of HSCs has proven prohibitive. To examine the activity upstream of fatty acid oxidation in
HSCs, we have generated hematopoietic-specific conditional knockout mice for key genes impacting fatty acid
oxidation pathway and/or fatty acid flow. A new biosensor for assessment of fatty acid oxidation activity in live
cells has likewise been established to determine the metabolic modes which are most relevant to the controlled
equilibrium of HSCs, and the gene-expression oriented bioinformatics tool, graphite, has been adapted to identify
specific metabolite-dependent pathways. In order to illuminate the behavior of individual HSCs in vivo, we have
established new technical regimens which include prospective isolation of HSCs with high purity based on Tie2
positivity, a local transplantation technique which delivers a single HSC under multiphoton microscopy guidance
into the bone marrow of a live mouse, and micropipette aspiration to extract single cells after division directly
from the bone marrow for functional or transcriptomic assay. Our project will utilize these advances to test our
hypothesis regarding the roles of lipid metabolism in HSC fate choice. This in turn will facilitate novel therapeutic
strategies for shifting the division balance of HSCs toward self-renewal through metabolic manipulation, and
possibly contribute to improved clinical outcomes after HSC transplantation for non-malignant blood diseases.
Thus, the goals of this proposal are three-fold: (1) In Aim 1, we will investigate the function of mitochondrial fatty
acid oxidation in HSC division symmetry and explore a potential source of fatty acids to fulfill the requirements
of HSCs; (2) In Aim 2, we will use the biosensor to identify key downstream metabolic targets of fatty acid
metabolism for HSC fate and explore the measurement of the cellular metabolome in HSCs; and (3) finally, we
propose in Aim 3 to directly examine in vivo HSC division symmetry, and the resulting division balance of fatty
acid oxidation-defective HSCs will show definitively the in vivo relevance of fatty acid metabolism to HSC fate. If
successful, the proposed research will positively impact the HSC field by providing a deeper understanding of
the metabolic cues governing HSC fate decisions.
摘要
干细胞分裂的对称性是干细胞生物学中最基本的问题之一,也是一个重要的研究方向。
我们研究的目标是确定调节造血干细胞(Hsc)的关键代谢途径。
命运。我们假设脂代谢通过对分裂的精确控制来促进HSC的维持。
模式。单细胞方法已经证实了脂肪酸对受损线粒体的增强清除作用
氧化是HSCs自我更新扩增的重要机制。然而,我们对此的理解
HSC的自我更新和脂代谢之间的关系是有限的,正如对HSC个体分裂的分析一样
模式受到可用HSC富集组分的异质性和技术上的阻碍
在体内成像HSC命运的挑战。此外,完整代谢组学分析所需的细胞数量
事实证明,罕见的造血干细胞种群的数量令人望而却步。为了检测脂肪酸氧化上游的活性
HSCs,我们已经产生了影响脂肪酸的关键基因的造血特异性条件性基因敲除小鼠
氧化途径和/或脂肪酸流动。一种用于评价活体脂肪酸氧化活性的新型生物传感器
同样,细胞也被建立来确定与受控者最相关的代谢模式
HSCs的平衡,以及面向基因表达的生物信息学工具,石墨已被用于识别
特定的代谢物依赖途径。为了阐明单个造血干细胞在体内的行为,我们有
建立了新的技术方案,包括基于Tie2的高纯度HSCs的前瞻性分离
阳性,一种在多光子显微镜引导下移植单个HSC的局部移植技术
进入活体小鼠的骨髓,微吸管抽吸直接提取分裂后的单个细胞
从骨髓中提取,用于功能或转录分析。我们的项目将利用这些进步来测试我们的
关于脂代谢在HSC命运选择中作用的假说。这反过来将促进新的治疗方法
通过代谢调控将造血干细胞的分裂平衡转向自我更新的策略,以及
可能有助于改善非恶性血液病的HSC移植后的临床结果。
因此,这项提议的目标有三个:(1)在目标1中,我们将研究线粒体脂肪的功能
酸氧化在HSC分裂对称性和潜在脂肪酸来源方面的满足要求
(2)在目标2中,我们将使用生物传感器来识别脂肪酸的关键下游代谢靶点
代谢对HSC命运的影响,并探索HSCs细胞代谢物的测定;(3)最后,我们
在目标3中建议直接检查体内HSC的分裂对称性,并由此得到脂肪的分裂平衡
酸性氧化缺陷的HSC将在体内明确地显示脂肪酸代谢与HSC命运的相关性。如果
如果成功,拟议的研究将通过提供对以下方面的更深入的了解,对HSC领域产生积极影响
主宰HSC命运决定的代谢线索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keisuke Ito其他文献
Keisuke Ito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keisuke Ito', 18)}}的其他基金
Single cell approach to uncovering factors regulating HSC division symmetry in vivo
单细胞方法揭示体内调节 HSC 分裂对称性的因素
- 批准号:
9425824 - 财政年份:2017
- 资助金额:
$ 37.58万 - 项目类别:
Single cell approach to uncovering factors regulating HSC division symmetry in vivo
单细胞方法揭示体内调节 HSC 分裂对称性的因素
- 批准号:
9979865 - 财政年份:2017
- 资助金额:
$ 37.58万 - 项目类别:
Single cell approach to uncovering factors regulating HSC division symmetry in vivo
单细胞方法揭示体内调节 HSC 分裂对称性的因素
- 批准号:
10208868 - 财政年份:2017
- 资助金额:
$ 37.58万 - 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
- 批准号:
9857819 - 财政年份:2014
- 资助金额:
$ 37.58万 - 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
- 批准号:
9096068 - 财政年份:2014
- 资助金额:
$ 37.58万 - 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
- 批准号:
8611386 - 财政年份:2014
- 资助金额:
$ 37.58万 - 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
- 批准号:
9314542 - 财政年份:2014
- 资助金额:
$ 37.58万 - 项目类别:
Epigenetic regulation by microRNA of MDS pathogenesis
MicroRNA对MDS发病机制的表观遗传调控
- 批准号:
9135832 - 财政年份:2014
- 资助金额:
$ 37.58万 - 项目类别:
The roles of lipid metabolism in the maintenance of hematopoietic stem cells
脂质代谢在造血干细胞维持中的作用
- 批准号:
9857923 - 财政年份:2013
- 资助金额:
$ 37.58万 - 项目类别:
The roles of lipid metabolism in the maintenance of hematopoietic stem cells
脂质代谢在造血干细胞维持中的作用
- 批准号:
8481961 - 财政年份:2013
- 资助金额:
$ 37.58万 - 项目类别:
相似海外基金
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
- 批准号:
MR/Y013891/1 - 财政年份:2024
- 资助金额:
$ 37.58万 - 项目类别:
Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
- 批准号:
BB/Y006542/1 - 财政年份:2024
- 资助金额:
$ 37.58万 - 项目类别:
Research Grant
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
- 批准号:
479570 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别:
Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
- 批准号:
488898 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别:
Operating Grants
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
- 批准号:
23H03323 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
- 批准号:
23K08293 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
- 批准号:
23K19922 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Adipose Tissue T Cell Polarization and Metabolic Health in Persons Living with HIV
HIV 感染者的脂肪组织 T 细胞极化和代谢健康
- 批准号:
10619176 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
- 批准号:
10604611 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 37.58万 - 项目类别: