An Augmented Reality Device to Prevent Wrong-Level Spine Surgery

防止脊柱手术水平错误的增强现实设备

基本信息

  • 批准号:
    9907919
  • 负责人:
  • 金额:
    $ 25.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-09 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

Clear Guide Medical, Inc. Summary Wrong-level spine surgery has been classified as a “never event”, meaning an adverse event that is unambiguous (clearly identifiable and measurable), serious (resulting in death or significant disability), and usually preventable. However, unlike other medical errors such as wrong side or wrong site surgeries which have been significantly reduced through the use of checklists and other protocol changes, wrong-level spine surgery numbers remain stubbornly high [Grimm-2014]. Since February 2009, CMS has not paid for any costs associated with wrong-site surgeries and many state and private insurers have followed suit [Wong-2014]. Moreover, the occurrence of wrong-level spine surgeries often results in legal action with significant financial awards to patients [Goodkin-2004], making it a costly error for both the physician and hospital. Although wrong site surgery occurs in all surgical specialties, the majority of cases have been recorded in orthopedic surgery [Ambe-2015]. Up to 50% of spine surgeons report having performed wrong-level surgery [Mody-2008] and Watts-2019 concluded “Wrong level surgery of the spine is a significant safety issue facing the field that continues to occur despite surgical teams following guidelines. As poor radiograph quality and interpretability were the most common root causes of these events, interventions aimed at optimizing image quality and accurate interpretation would be a logical first action.” This proposal aims to solve the wrong-level spine surgery problem by registering the patient’s back directly to the preoperative CT or MRI where image quality is not an issue, having the surgeon mark—on the MRI or CT screen—the entry point for surgery, and then projecting that point onto the patient’s back, an augmented reality innovation that can be seen by everyone in the OR. For the roughly 1 in 3000 patients who endures a wrong-level spine surgery [Mody-2008], eliminating the risk of wrong-level surgery can facilitate the decision to undergo spine surgery at all, and eliminate potentially life-changing complications. The public health implications of this proposal are fewer wrong-level spine surgeries which will benefit not only patients but also presumably reduce lawsuits against physicians and hospitals, thereby reducing insurance claims and thereby policy costs. Hospitals, too, can reduce costs by avoiding costly repeat/repair surgeries that are unreimbursed.
Clear Guide Medical,Inc. 总结 错误水平的脊柱手术已被归类为“从不发生的事件”,这意味着不良事件 明确(明确可识别和可测量)、严重(导致死亡或严重残疾), 通常是可以预防的。然而,与其他医疗错误,如错误的一面或错误的网站, 通过使用检查表和其他方案, 然而,随着年龄的变化,错误节段的脊柱手术数量仍然居高不下[Grimm-2014]。二月以来 2009年,CMS没有支付任何与错误部位手术相关的费用,许多州和私人 保险公司纷纷效仿[Wong-2014]。此外,错误节段脊柱手术的发生通常 导致法律的行动,给患者带来巨大的经济奖励[Goodkin-2004],使其成为一种昂贵的 医生和医院的错误。 虽然错误的部位手术发生在所有的外科专业,大多数情况下已被记录 骨科手术[Ambe-2015]。高达50%的脊柱外科医生报告曾进行过错误的节段 手术[Mody-2008]和Watts-2019得出结论“脊柱节段错误手术具有显著安全性 尽管手术团队遵循指南,但该领域面临的问题仍在继续发生。一样穷 X线片质量和可解释性是这些事件的最常见根本原因, 旨在优化图像质量和准确解释的技术将是合乎逻辑的第一步。这 一项提案旨在通过直接登记病人的背部来解决脊柱手术的错误水平问题 对于图像质量不是问题的术前CT或MRI, MRI或CT屏幕-手术的切入点,然后将该点投影到患者的背部, 增强现实创新,可以被手术室里的每个人看到。 对于大约1/3000的患者谁忍受错误的水平脊柱手术[Mody-2008],消除 错误节段手术的风险可以促进进行脊柱手术的决定, 可能改变一生的并发症 这一建议对公共卫生的影响是减少了错误的脊柱手术,这将有利于 不仅是病人,而且可能会减少对医生和医院的诉讼, 减少保险索赔,从而降低保单成本。医院也可以通过避免昂贵的 重复/修复未报销的手术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Purnima Rajan其他文献

Purnima Rajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Purnima Rajan', 18)}}的其他基金

Addressing Lumbar Puncture Challenges Using Patch Ultrasound and Augmented Reality
使用贴片超声和增强现实解决腰椎穿刺挑战
  • 批准号:
    10258250
  • 财政年份:
    2021
  • 资助金额:
    $ 25.13万
  • 项目类别:
A Novel Device for Training and Evaluating Ultrasound-Guided Procedures In Anesthesia
一种用于培训和评估麻醉中超声引导手术的新型设备
  • 批准号:
    10323988
  • 财政年份:
    2021
  • 资助金额:
    $ 25.13万
  • 项目类别:
Augmented Reality Real-Time Guidance for MRI-Guided Interventions
增强现实实时指导 MRI 引导干预
  • 批准号:
    10603043
  • 财政年份:
    2020
  • 资助金额:
    $ 25.13万
  • 项目类别:
Augmented Reality Real-Time Guidance for MRI Interventions
增强现实实时指导 MRI 干预
  • 批准号:
    10080437
  • 财政年份:
    2020
  • 资助金额:
    $ 25.13万
  • 项目类别:
Augmented Reality Real-Time Guidance for MRI-Guided Interventions
增强现实实时指导 MRI 引导干预
  • 批准号:
    10709008
  • 财政年份:
    2020
  • 资助金额:
    $ 25.13万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 25.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了