Addressing Lumbar Puncture Challenges Using Patch Ultrasound and Augmented Reality
使用贴片超声和增强现实解决腰椎穿刺挑战
基本信息
- 批准号:10258250
- 负责人:
- 金额:$ 31.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdipose tissueAdoptionAnatomyAnimal ExperimentsAnimalsAttentionAugmented RealityAutomobile DrivingCerebrospinal FluidClinicalCollaborationsDangerousnessData CollectionDevelopmentDiagnosisDiagnosticEconomicsEnvironmentFaceFailureFeedbackFreedomFutureGoalsHandImageIndustryInpatientsInstitutionIonizing radiationLeadLengthLiquid substanceMeasurementMedicalModelingMotionNavigation SystemNeedlesNeurologistObesityParticipantPathway interactionsPatientsPerformancePhasePhysiciansPositioning AttributeProceduresPuncture procedureResolutionRotationSamplingSmall Business Innovation Research GrantSpinal PunctureStructureSystemTabletsTechnologyTherapeuticTimeTissuesTransducersTranslationsUltrasonographyUniversitiesUpdateValidationVertebral columnVisualizationbaseblindclinical applicationcommercializationcontrast imagingcost effectivedesignemergency service responderexperimental studyhead mounted displayin vivoinstrumentnervous system disorderprototypereal-time imagesspine bone structurestandard carestandard of caretoolusability
项目摘要
PROJECT SUMMARY
Every year, neurologists and emergency personnel perform over 400,000 diagnostic and therapeutic lumbar
punctures (LP) to collect cerebrospinal fluid (CSF), a vital fluid in the diagnosis and treatment of a myriad of
neurological diseases and disorders. Under standard care, LPs are performed in an inpatient environment at the
bedside. The procedure involves navigating a needle that can be up to 14 cm in length into a 3-6 mm target
window in the lumbar spine region. Physicians face the challenge of precise, accurate navigation and placement
of the needle to the target. Failure to collect a viable sample and procedure-related complications can lead to
misdiagnoses, treatment delays, and unnecessary and even dangerous procedures. Currently, the average
physician takes 3 attempts to correctly place the needle. The associated failure rate of the procedure is ~23.3%.
The failure rate rises to 50% in obese and scoliotic patients, for which the physician must navigate through
excess adipose tissue and difficult anatomy. Failure to collect CSF leads the use of fluoroscopic guidance, which
takes longer and subjects the patient and physician to ionizing radiation. Except for fluoroscopic guidance, the
current standard of care does not involve any visualization of tissue using technology such as topical ultrasound.
In this phase I application, we propose a navigation system featuring a patient-anchored ultrasound patch which
transforms LPs from a blind procedure with high failure rate to a fast and simple one. Our solution addresses the
typical shortcomings of regular ultrasound guidance which has limited its wide adoption for LPs. The patch
ultrasound relieves the clinician from handling the ultrasound and needle simultaneously, yields high-contrast
images of the vertebrae pathway, and provides a reliable 3D volume. The navigation system with augmented
reality helps the clinician to successfully reach the target on the first try. Most importantly, the combination of
these technologies offers what we call active needle visualization, where the imaging plane of the ultrasound is
controlled to provide an optimal view of the needle in a closed-loop system. Our hypothesis in this proposal is
that the simplicity of the patch design and the availability of off-the-shelf navigation components combined with
Clear Guide’s matured navigation platform promises a cost-effective solution suitable for the clinical application
at hand. We will achieve our goal through the following aims: (1) Develop and Integrate Patient-anchored
Ultrasound Imaging Patch with Clear Guide Medical Tracking System, (2) Interface Design and Incorporation
into a Tablet and head-mounted display (HMD), and (3) Accuracy Measurement and User Data Collection. The
ultimate goal of this academic (Johns Hopkins University) and industry (Clear Guide Medical) collaboration is
the safe, economic, and effective development of patient-anchored ultrasound patch to actively guide LP
procedures.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AutoInFocus, a new paradigm for ultrasound-guided spine intervention: a multi-platform validation study
AutoInFocus,超声引导脊柱干预的新范例:多平台验证研究
- DOI:10.1007/s11548-022-02583-6
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Xu, Keshuai;Jiang, Baichuan;Moghekar, Abhay;Kazanzides, Peter;Boctor, Emad
- 通讯作者:Boctor, Emad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Purnima Rajan其他文献
Purnima Rajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Purnima Rajan', 18)}}的其他基金
A Novel Device for Training and Evaluating Ultrasound-Guided Procedures In Anesthesia
一种用于培训和评估麻醉中超声引导手术的新型设备
- 批准号:
10323988 - 财政年份:2021
- 资助金额:
$ 31.19万 - 项目类别:
Augmented Reality Real-Time Guidance for MRI-Guided Interventions
增强现实实时指导 MRI 引导干预
- 批准号:
10603043 - 财政年份:2020
- 资助金额:
$ 31.19万 - 项目类别:
Augmented Reality Real-Time Guidance for MRI-Guided Interventions
增强现实实时指导 MRI 引导干预
- 批准号:
10709008 - 财政年份:2020
- 资助金额:
$ 31.19万 - 项目类别:
Augmented Reality Real-Time Guidance for MRI Interventions
增强现实实时指导 MRI 干预
- 批准号:
10080437 - 财政年份:2020
- 资助金额:
$ 31.19万 - 项目类别:
An Augmented Reality Device to Prevent Wrong-Level Spine Surgery
防止脊柱手术水平错误的增强现实设备
- 批准号:
9907919 - 财政年份:2019
- 资助金额:
$ 31.19万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 31.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 31.19万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 31.19万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 31.19万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 31.19万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 31.19万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 31.19万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 31.19万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 31.19万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 31.19万 - 项目类别:
Standard Grant