Central Nervous System Processing of Complex Acoustic Signals
复杂声音信号的中枢神经系统处理
基本信息
- 批准号:9908656
- 负责人:
- 金额:$ 4.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAffectAnimal ModelAuditoryAuditory PerceptionAuditory areaAuditory systemBehavioralBirdsBrainCNS processingCodeCommunicationComplexCuesDataDiscriminationDiseaseElementsFamily PsittacidaeFrequenciesGoalsHearingHumanKnowledgeLanguageLearningLinkMammalsMapsMeasuresMelopsittacusModelingNeuraxisNeuronsPatternPattern RecognitionPerceptionProcessProsencephalonPsychoacousticsResearchSignal TransductionSongbirdsSpeechSpeech PerceptionStimulusStructureSupport SystemTechniquesTestingTrainingbrain circuitrycomparativeexperimental studyextracellularimprovedneural correlateneuromechanismrelating to nervous systemresponsesoundspecies differencetreatment strategyvocal learningzebra finch
项目摘要
Project Summary: In perceiving acoustic communication signals, two of the most important levels at which the
central nervous system (CNS) must process sounds are (1) temporal fine structure (TFS) – rapid changes in the
frequency and amplitude within the envelope of the speech waveform – and (2) sequential patterns in the
structure of acoustic elements. In human language, these abilities are important both for decoding information
from speech and in learning to accurately produce words and sentences. While much has been learned about
how the auditory cortex in humans computes complex acoustic signals through using non-invasive techniques,
it is not known how neurons of the auditory system process the acoustic communication signals at these multiple
levels. Vocal learning birds with their complex, learned vocal repertoires and sequentially patterned songs
provide very good models for understanding how the brain processes complex acoustic signals.
Songbirds, such as zebra finches, and parrots, such as budgerigars, are especially attractive models for
asking how the CNS processes complex acoustic signals as the birds can hear TFS at a level that surpasses
the capability of humans and other mammals, and the neural mechanisms involved in TFS and sequence
processing have been little explored. Moreover, recent experiments have suggested that changes in TFS are
much more discriminable to zebra finches than changes in the sequential pattern of song syllables. This is in
contrast to humans and budgerigars, for which changes to sequence are very salient. In perception, the coding
of neurons in primary and secondary auditory regions for TFS and sequential patterns may help explain why
species differ in processing these features. Examining these capacities at the single- and multi-unit level in vocal
learning birds could help us, thereby, further understand CNS processing of acoustic communication signals and
address central auditory disorders affecting human language.
To determine the neural basis for auditory pattern recognition and processing of TFS, I propose the
following 2 specific aims: In aim 1, I will compare the discriminability of TFS and sequential patterns in zebra
finches, a songbird model, and budgerigars, a parrot model. I will pit these two auditory levels against each other
in psychoacoustics testing using Schroeder waveforms, synthetic stimuli that can be manipulated so that only
TFS or the sequence of elements is changed, and I will also obtain thresholds in the two species for hearing
changes to sequence. In aim 2, I will compare how neurons in auditory regions of the zebra finch and budgerigar
forebrains code TFS and sequence information in complex acoustic signals. I will measure single- and multi-unit
extracellular selectivity to the TFS of Schroeder waveforms in the primary auditory region of zebra finches and
budgerigars and I will measure dishabituation to changes in sequence in a secondary auditory region. In
summary, the proposed project will improve scientific knowledge about complex auditory perception by linking
behavioral data about TFS and pattern processing with neural correlates in the auditory system.
项目摘要:在感知声学通信信号时,
中枢神经系统(CNS)必须处理的声音是(1)颞叶精细结构(TFS)-快速变化的
语音波形的包络内的频率和幅度-以及(2)语音波形中的序列模式。
声学元件的结构。在人类语言中,这些能力对于解码信息
从言语和学习中准确地产生单词和句子。虽然我们已经了解了很多
人类的听觉皮层如何通过非侵入性技术计算复杂的声音信号,
听觉系统的神经元如何在这些倍数下处理声学通信信号是未知的
程度.声乐学习鸟类与他们的复杂,学习声乐曲目和顺序模式的歌曲
为了解大脑如何处理复杂的声学信号提供了非常好的模型。
鸣禽,如斑胸草雀和鹦鹉,如虎皮鹦鹉,是特别有吸引力的模式,
询问中枢神经系统如何处理复杂的声音信号,因为鸟类可以听到超过
人类和其他哺乳动物的能力,以及涉及TFS和序列的神经机制
处理很少被探索。此外,最近的实验表明,TFS的变化是
对斑胸草雀来说,这比唱歌音节顺序模式的变化更容易辨别。这是
与人类和虎皮鹦鹉相反,它们的序列变化非常显著。在感知中,编码
TFS和序列模式的初级和次级听觉区域的神经元可能有助于解释为什么
物种在处理这些特征方面有所不同。检查这些能力在单和多单位的水平,在声乐
因此,学习鸟类可以帮助我们进一步了解声音通信信号的中枢神经系统处理,
解决影响人类语言的中枢听觉障碍。
为了确定听觉模式识别和处理TFS的神经基础,我提出了
以下2个具体目标:在目标1中,我将比较TFS和序列模式在斑马中的可辨别性
雀类,鸣禽模型,虎皮鹦鹉,鹦鹉模型。我会让这两个听觉层次相互对立
在使用Schroeder波形的心理声学测试中,可以操纵的合成刺激,
TFS或元素的顺序发生了变化,我还将获得这两个物种的听觉阈值
改变顺序。在目标2中,我将比较斑胸草雀和虎皮鹦鹉听觉区域的神经元
前脑编码复杂声学信号中的TFS和序列信息。我将测量单个和多个单位
斑胸草雀初级听觉区对Schroeder波形TFS的细胞外选择性,
鹦鹉和我将测量对次级听觉区域中顺序变化的适应性丧失。在
总而言之,拟议的项目将通过将复杂的听觉感知联系起来,
关于TFS的行为数据和听觉系统中神经相关的模式处理。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrimination of natural acoustic variation in vocal signals.
- DOI:10.1038/s41598-020-79641-z
- 发表时间:2021-01-13
- 期刊:
- 影响因子:4.6
- 作者:Fishbein AR;Prior NH;Brown JA;Ball GF;Dooling RJ
- 通讯作者:Dooling RJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Ryan Fishbein其他文献
Adam Ryan Fishbein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Research Grant














{{item.name}}会员




