Investigating the Role of Hypoxic Signaling on Adipose-Derived Stem Cell Osteogenesis
研究缺氧信号对脂肪干细胞成骨的作用
基本信息
- 批准号:9910771
- 负责人:
- 金额:$ 4.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAdipose tissueAlkaline PhosphataseAutologous TransplantationBiochemicalBiocompatible MaterialsBiologicalBiological AssayBispecific Antibody 2B1Blood VesselsBone DensityBone RegenerationBone TransplantationCalciumCaliberCalvariaCell Culture TechniquesCell DeathCell Differentiation processCell SurvivalCellsCellular Metabolic ProcessCharacteristicsCollaborationsConflict (Psychology)DataDefectDepositionDirect CostsDown-RegulationEncapsulatedEnvironmentExpression ProfilingExtracellular MatrixFibrinogenFutureGene ExpressionGenesGeometryGoldHistologyHypoxiaHypoxia Inducible FactorIn SituIn VitroInfiltrationLeadLiteratureMature BoneMeasuresMediatingMediator of activation proteinMesenchymal Stem CellsMetabolicMetabolismMineralsModelingMorbidity - disease rateMusOsteogenesisOutcomeOxygenOxygen ConsumptionPatientsPhysiologicalPolymersPopulationProceduresProductionProteinsRoleSignal TransductionSiteSmall Interfering RNASourceStromal CellsStructureTechniquesTestingThickTissue EngineeringTissuesTransfectionTransplantationTreatment EfficacyUnited StatesWestern Blottingbonecraniofacial bonedesignexperimental studygain of functiongenetic manipulationhypoxia inducible factor 1implantationimprovedin vitro Modelin vivoinsightloss of functionmicroCTmineralizationnanoparticlenovelnovel strategiesnovel therapeuticsosteogenicoverexpressionovertreatmentpolycaprolactoneresponsescaffoldstandard carestemstem cell therapystem cellssubcutaneous
项目摘要
Project Summary/Abstract: Craniofacial bone grafts are used to treat over 200,000 patients in the United
States annually. Autograft, the current standard of treatment, has multiple drawbacks including donor-site
morbidity and lack of available tissue. A promising alternative is the combination adipose-derived stem/stromal
cells (ASCs) with osteoinductive biomaterial scaffolds that can be 3D-printed to mimic the native geometry of
the defect. ASCs can be readily obtained in high yields from non-invasive procedures and have been shown to
mineralize robustly in vitro, leading to their utility as a stem cell source. Despite these promising
characteristics, ASCs have demonstrated limited ability to regenerate bone in vivo. A predominant hypothesis
is that the hypoxic environment following implantation may lead to massive cell death; however, in preliminary
in vitro experiments, I have observed excellent (>70%) ASC survival in severely hypoxic culture, but during in
vitro osteogenic differentiation, Runx2 expression and alkaline phosphatase (ALP) activity, two common
markers for osteogenesis, are inhibited by hypoxia. Additionally, through the use of a novel strategy for
delivering oxygen to cells seeded in 3D scaffolds, I have demonstrated that providing oxygen in situ to
transplanted ASCs doubled the amount of bone formed in vivo in a murine ectopic bone formation model.
Thus, the major premise of this proposal is that the reduced in vivo bone formation by ASCs is due to the
direct inhibition of ASC osteogenesis by hypoxia.
The objective of the proposed study is to investigate the interplay between hypoxia and ASC
osteogenesis, overcoming several major limitations in the field. First, ASC osteogenesis in hypoxia will be
studied quantitatively using a 3D in vitro model of bone formation Previous literature examining the impact of
oxygen on ASC differentiation produced conflicting results, because they relied on qualitative metrics of
osteogenesis. In Specific Aim 1, I will use a 3D in vitro model of bone formation to quantify changes in
mineralization, tissue microarchitecture, metabolism, and gene expression due to hypoxia. Extensive gene
expression data may allow us to identify novel mediators of oxygen-dependent ASC osteogenesis. Next, in
Specific Aim 2, I will investigate the interplay between hypoxic signaling and ASC osteogenesis using gain-of-
function and loss-of-function studies using novel non-viral polymeric nanoparticles and oxygen-releasing
scaffolds. First, I will determine whether the effect of hypoxia on ASC osteogenesis can be simulated by
upregulating hypoxia-inducible factor-1α (HIF-1α) downregulating HIF-1α. Third, I will determine the effect of
oxygen release on ASC osteogenesis. Finally, in Specific Aim 3, I will study the effects of HIF-1α gain-of-
function and loss-of-function and oxygen delivery on ASC osteogenesis in a calvarial defect model. The results
of these studies will deepen the understanding between hypoxia and osteogenesis and inform efforts to
improve ASC osteogenesis in vivo.
项目摘要/摘要:颅面骨移植在美国用于治疗超过 200,000 名患者
每年各州。自体移植是目前的治疗标准,具有多种缺点,包括供体部位
发病率和缺乏可用组织。一种有前途的替代方案是脂肪干/基质的组合
带有骨诱导生物材料支架的细胞(ASC),可以通过 3D 打印来模仿细胞的天然几何形状
缺陷。 ASC 可以很容易地通过非侵入性操作以高产率获得,并且已被证明
在体外强烈矿化,使其可用作干细胞来源。尽管有这些希望
由于ASCs的特性,其在体内再生骨的能力有限。主要假设
植入后的缺氧环境可能导致大量细胞死亡;然而,在初步
在体外实验中,我观察到在严重缺氧的培养物中 ASC 的存活率极好(>70%),但在
体外成骨分化、Runx2 表达和碱性磷酸酶 (ALP) 活性,两个常见的
成骨的标志物受到缺氧的抑制。此外,通过使用一种新颖的策略
通过向 3D 支架中接种的细胞输送氧气,我已经证明,原位提供氧气
在小鼠异位骨形成模型中,移植的 ASC 使体内形成的骨量增加了一倍。
因此,该提议的主要前提是,ASC 体内骨形成的减少是由于
缺氧直接抑制ASC成骨。
本研究的目的是调查缺氧与 ASC 之间的相互作用
成骨,克服了该领域的几个主要限制。首先,ASC在缺氧条件下成骨
使用 3D 体外骨形成模型进行定量研究 之前的文献研究了骨形成的影响
氧气对 ASC 分化的影响产生了相互矛盾的结果,因为他们依赖于
成骨。在具体目标 1 中,我将使用 3D 体外骨形成模型来量化骨形成的变化
缺氧导致的矿化、组织微结构、代谢和基因表达。广泛的基因
表达数据可能使我们能够识别氧依赖性 ASC 成骨的新介质。接下来,在
具体目标 2,我将使用增益研究缺氧信号传导与 ASC 成骨之间的相互作用
使用新型非病毒聚合物纳米粒子和释放氧气进行功能和功能丧失研究
脚手架。首先,我将确定是否可以通过以下方式模拟缺氧对 ASC 成骨的影响:
上调缺氧诱导因子-1α (HIF-1α) 下调 HIF-1α。第三,我会确定效果
ASC 成骨过程中的氧气释放。最后,在具体目标 3 中,我将研究 HIF-1α 增益的影响 -
颅骨缺损模型中 ASC 成骨的功能和功能丧失以及氧输送。结果
这些研究将加深对缺氧和成骨之间的理解,并为以下方面的努力提供信息:
改善ASC体内成骨作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashley Farris其他文献
Ashley Farris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashley Farris', 18)}}的其他基金
Investigating the Role of Hypoxic Signaling on Adipose-Derived Stem Cell Osteogenesis
研究缺氧信号对脂肪干细胞成骨的作用
- 批准号:
10159731 - 财政年份:2020
- 资助金额:
$ 4.65万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 4.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 4.65万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 4.65万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 4.65万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 4.65万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 4.65万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 4.65万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 4.65万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 4.65万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 4.65万 - 项目类别:
Standard Grant