Validation of Physiologic CPR Quality Using NOn-inVasive Waveform Analytics (CPR-NOVA)

使用非侵入性波形分析 (CPR-NOVA) 验证生理心肺复苏质量

基本信息

  • 批准号:
    9910446
  • 负责人:
  • 金额:
    $ 40.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-15 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Project Abstract Pediatric cardiac arrest affects thousands of children each year. Progressive heart and lung failure is a predisposing cause in many of these events. Despite improvements in survival outcomes over the past two decades, more than half of these children still do not survive. As new brain injury complicates care among survivors, the burden to these children and the public's health is substantial. Cardiopulmonary resuscitation (CPR) – the medical procedure of providing chest compressions and ventilations during cardiac arrest – saves lives, and higher quality CPR is more effective at doing so. One method to improve CPR quality is through the use of CPR quality monitoring defibrillators. By providing real- time feedback on CPR mechanics targets such as chest compression depth and rate, they represent the best patient care option currently available to improve CPR performance. Unfortunately, most of these devices are either not approved for children or use pads that are too large for many pediatric patients. Thus, current technology limits the benefit of meaningful CPR quality monitoring to a small percentage of the children who suffer a cardiac arrest. Given the strong association between pediatric CPR quality and outcomes, new methods to monitor CPR quality are urgently needed to improve the care of this vulnerable population. Physiologic-directed CPR is a promising technique that uses the hemodynamic response of the patient to guide the ongoing resuscitation effort. This approach overcomes the technological limitations of existing CPR quality monitoring technology by using data from patient monitors. Unfortunately, because many patients do not have intra-arterial lines in place at the time of arrest to guide CPR, its clinical impact has been limited. To overcome this limitation, the objective of this ancillary application is to leverage the existing infrastructure of the National Institute of Child Health and Human Development-funded Collaborative Pediatric Critical Care Research Network (CPCCRN) and the unique hemodynamic waveform database of the National Heart, Lung, and Blood Institute-funded parent R01 – the ICU-Resuscitation (ICU-RESUS) Project – to validate two noninvasive physiologic CPR monitors applicable to nearly every pediatric cardiac arrest: 1) end-tidal carbon dioxide (ETCO2); and 2) PhotoPlethysmoGraphy (PPG) obtained via pulse oximetry. Using sophisticated machine learning methods, a prospective observational analytic investigation is proposed with the following Aims: 1) Evaluate ETCO2 as a noninvasive CPR quality monitor among children receiving at least 1 minute of CPR in a CPCCRN intensive care unit; and 2) Using novel machine learning classification algorithms, evaluate PPG and other candidate physiologic waveforms as noninvasive CPR quality monitors. By leveraging the substantial infrastructure of the CPCCRN, the novel hemodynamic waveform database of ICU-RESUS, and advanced machine learning analytics, this submission represents a unique opportunity to validate two noninvasive physiologic pediatric CPR quality monitors to improve clinical care and save lives. !
项目摘要 小儿心脏骤停每年影响成千上万的儿童。进行性心肺衰竭是一种 诱发因素尽管在过去的两年中, 几十年来,这些儿童中仍有一半以上无法生存。由于新的脑损伤使护理复杂化, 幸存者,这些儿童和公众健康的负担是巨大的。 心肺复苏术(CPR)-提供胸部按压的医疗程序, 心脏骤停时的心肺复苏-挽救生命,更高质量的心肺复苏术在这方面更有效。一 提高心肺复苏质量的方法是通过使用心肺复苏质量监控器。通过提供真实的- 心肺复苏力学指标的时间反馈,如胸外按压深度和速率,它们代表了最好的 目前可用于改善CPR性能的患者护理选项。不幸的是,这些设备中的大多数 要么未被批准用于儿童,要么使用对许多儿科患者来说太大的护垫。因此,当前 技术限制了有意义的CPR质量监测的益处, 心脏骤停鉴于小儿CPR质量和结果之间的密切联系,新方法 迫切需要监测心肺复苏质量,以改善对这一弱势群体的护理。 生理指导的CPR是一种有前途的技术,其使用患者的血液动力学反应来 指导正在进行的复苏工作。这种方法克服了现有CPR的技术局限性 通过使用来自患者监护仪的数据的质量监测技术。不幸的是,因为许多患者 在心脏骤停时没有动脉内导管来指导CPR,其临床影响有限。到 为了克服这一限制,该辅助应用程序的目标是利用现有的基础设施, 由国家儿童健康与人类发展研究所资助的儿科重症监护合作项目 研究网络(CPCCRN)和国家心脏,肺, 和血液研究所资助的父R 01-ICU复苏(ICU-RESUS)项目-以验证两个 无创生理CPR监护仪适用于几乎所有的小儿心脏骤停:1)呼气末碳 二氧化碳(ETCO 2);和2)通过脉搏血氧仪获得的光电容积描记(PPG)。使用复杂 机器学习方法,提出了一个前瞻性的观察分析研究, 目的:1)在接受至少1分钟心肺复苏术的儿童中评估ETCO 2作为无创CPR质量监测器的作用。 CPCCRN重症监护室中的CPR;以及2)使用新型机器学习分类算法,评估 PPG和其他候选生理波形作为无创CPR质量监测器。 通过利用CPCCRN的大量基础设施, ICU-RESUS和先进的机器学习分析,本次提交是一个独特的机会, 验证两个无创生理儿科CPR质量监测器,以改善临床护理和挽救生命。!

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT ALLEN BERG其他文献

ROBERT ALLEN BERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT ALLEN BERG', 18)}}的其他基金

Collaborative Pediatric Critical Care Research Network - Clinical Site
儿科重症监护协作研究网络 - 临床网站
  • 批准号:
    10393847
  • 财政年份:
    2021
  • 资助金额:
    $ 40.47万
  • 项目类别:
Collaborative Pediatric Critical Care Research Network - Clinical Site
儿科重症监护协作研究网络 - 临床网站
  • 批准号:
    10470937
  • 财政年份:
    2021
  • 资助金额:
    $ 40.47万
  • 项目类别:
Collaborative Pediatric Critical Care Research Network - Clinical Site
儿科重症监护协作研究网络 - 临床网站
  • 批准号:
    10667505
  • 财政年份:
    2021
  • 资助金额:
    $ 40.47万
  • 项目类别:
Validation of Physiologic CPR Quality Using NOn-inVasive Waveform Analytics (CPR-NOVA)
使用非侵入性波形分析 (CPR-NOVA) 验证生理心肺复苏质量
  • 批准号:
    9769944
  • 财政年份:
    2019
  • 资助金额:
    $ 40.47万
  • 项目类别:
Pediatric Critical Care Research Network at Children's Hospital of Philadelphia
费城儿童医院儿科重症监护研究网络
  • 批准号:
    8204482
  • 财政年份:
    2009
  • 资助金额:
    $ 40.47万
  • 项目类别:
Pediatric Critical Care Research Network at Children's Hospital of Philadelphia
费城儿童医院儿科重症监护研究网络
  • 批准号:
    7798750
  • 财政年份:
    2009
  • 资助金额:
    $ 40.47万
  • 项目类别:
Pediatric Critical Care Research Network at Children's Hospital of Philadelphia
费城儿童医院儿科重症监护研究网络
  • 批准号:
    8599784
  • 财政年份:
    2009
  • 资助金额:
    $ 40.47万
  • 项目类别:
Pediatric Critical Care Research Network at Children's Hospital of Philadelphia
费城儿童医院儿科重症监护研究网络
  • 批准号:
    8401899
  • 财政年份:
    2009
  • 资助金额:
    $ 40.47万
  • 项目类别:
Pediatric Critical Care Research Network at Children's Hospital of Philadelphia
费城儿童医院儿科重症监护研究网络
  • 批准号:
    9187924
  • 财政年份:
    2009
  • 资助金额:
    $ 40.47万
  • 项目类别:
Pediatric Critical Care Research Network at Children's Hospital of Philadelphia
费城儿童医院儿科重症监护研究网络
  • 批准号:
    8010169
  • 财政年份:
    2009
  • 资助金额:
    $ 40.47万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了