Engineering CRISPR-Cas proteins for conditional and robust interrogation of the genome
工程化 CRISPR-Cas 蛋白以对基因组进行有条件且稳健的询问
基本信息
- 批准号:9908106
- 负责人:
- 金额:$ 30.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-05 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptive Immune SystemAddressAllosteric RegulationAmino Acid SequenceAutomobile DrivingBCAR1 geneBackBiologicalBiological ModelsCellsChimeric ProteinsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexDNADNA BindingDNA Double Strand BreakDataEngineeringEnvironmentGenesGeneticGenetic RecombinationGenomeGoalsGuide RNALibrariesLocationMapsMediatingMethodsNaturePeptide HydrolasesPlantsProtein EngineeringProteinsPublishingRegulationResearchResearch PersonnelRibonucleoproteinsScaffolding ProteinSeriesSignal PathwaySignal TransductionTestingTherapeuticTranscription CoactivatorTranscriptional ActivationVariantViralVirus DiseasesWorkbasebiological researchendonucleaseexperimental studyflexibilitygenome editinghigh throughput screeninghomologous recombinationimprovedimproved functioningmutantnext generationnovelnucleaseprogramsrecruitrepairedresearch and developmentscaffoldtargeted nucleasestool
项目摘要
Project Summary
Cas9 is an RNA-guided DNA-targeting endonuclease. Its programmability facilitates two extremely useful
functionalities that were previously difficult to engineer: the introduction of either a DNA double strand
break or recruitment, via fusion, of a protein effector to a desired location in the genome. As a
consequence, Cas9 has revolutionized both gene editing and functional interrogation of the genome.
Despite this potential, a number of issues constrain Cas9's utility. Its uncontrolled nature limits both on-
target endonuclease activity and the ability to promote the most desirable form of genome editing,
homologous recombination. Relatedly, Cas9's natural function as an endonuclease is not necessarily
congruent with that of a modular fusion protein scaffold and many effector fusions fail to elicit reliable
activity. The goal of our work is therefore to create the next-generation of CRISPR-Cas proteins that
enable finely-controlled genome editing activity and robust fusion protein activity. We have recently
developed a series of tools, fashioned around transposon-mediated recombination, that facilitate the
construction and isolation of highly engineered Cas9 fusion proteins. Using these tools, we have
engineered an allosterically regulated Cas9. Here, using this and optimized variants, we propose to
investigate how precise temporal control of Cas9 can improve the desired activities of on-target cutting
and homologous recombination. With regards to fusion protein construction, we have preliminary data
suggesting that the topology of Cas9 can be altered using circular permutation which, in principle,
provides a new class of protein scaffolds for effector recruitment. We propose to systematically map
Cas9's potential for circular permutation across its primary sequence and use these non-natural variants
to improve one class of highly useful Cas9-effectors, transcriptional activators. Finally, in the course of
our preliminary experiments, we have serendipitously discovered that circular permutation allows the
construction of gated Cas9 proteins that are activated upon specific proteolytic cleavage. We propose to
develop these molecules as a new class of genome editing tool and demonstrate their utility in a model
system of viral infection in planta. If successful, these experiments will address several of the major
challenges facing the genome editing community today: how to reduce off-target effects, increase
homologous recombination activity, and exploit the programmable nature of Cas9-fusion proteins to their
full extent.
项目摘要
Cas9是RNA引导的DNA靶向核酸内切酶。它的可编程性促进了两个非常有用的
以前难以工程化的功能:引入DNA双链,
通过融合将蛋白质效应物断裂或募集到基因组中的所需位置。作为
因此,Cas9彻底改变了基因编辑和基因组的功能询问。
尽管有这种潜力,但许多问题限制了Cas9的效用。它不受控制的性质限制了-
靶核酸内切酶活性和促进最理想形式的基因组编辑的能力,
同源重组相关地,Cas9作为内切核酸酶的天然功能不一定是必需的。
与模块化融合蛋白支架的功能一致,并且许多效应融合物不能引起可靠的
活动因此,我们工作的目标是创造下一代CRISPR-Cas蛋白,
能够实现精细控制的基因组编辑活性和稳健的融合蛋白活性。我们最近
开发了一系列工具,围绕转座子介导的重组,
高度工程化的Cas9融合蛋白的构建和分离。使用这些工具,我们
改造了一种变构调节的Cas9在这里,使用这个和优化的变体,我们建议
研究Cas9的精确时间控制如何改善靶向切割的预期活动
和同源重组。关于融合蛋白的构建,我们有初步的数据,
这表明Cas9的拓扑结构可以使用循环置换来改变,原则上,
提供了一类新的蛋白质支架用于效应子募集。我们建议系统地绘制
Cas9在其一级序列上循环排列的潜力,并使用这些非天然变体
以改进一类非常有用的Cas9效应子,转录激活子。最后,在
我们的初步实验,我们偶然发现,循环排列允许
构建在特异性蛋白水解切割时被激活的门控Cas9蛋白。我们建议
开发这些分子作为一类新的基因组编辑工具,并在模型中展示它们的实用性
植物体内病毒感染系统。如果成功,这些实验将解决几个主要的问题。
当今基因组编辑社区面临的挑战:如何减少脱靶效应,增加
同源重组活性,并利用Cas9-融合蛋白的可编程性质,
全范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Frank Savage其他文献
David Frank Savage的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Frank Savage', 18)}}的其他基金
Engineering CRISPR-Cas proteins for conditional and robust interrogation of the genome
工程化 CRISPR-Cas 蛋白以对基因组进行有条件且稳健的询问
- 批准号:
10333376 - 财政年份:2019
- 资助金额:
$ 30.5万 - 项目类别:
Self-assembly and function of bacterial microcompartments
细菌微区室的自组装和功能
- 批准号:
10226275 - 财政年份:2018
- 资助金额:
$ 30.5万 - 项目类别:
Fluorescent biosensors for metabolite imaging in live cells
用于活细胞代谢物成像的荧光生物传感器
- 批准号:
8571836 - 财政年份:2013
- 资助金额:
$ 30.5万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.5万 - 项目类别:
Research Grant