Selection and sensing applications of DNAzymes selective for paramagnetic metal ions
顺磁性金属离子选择性 DNAzyme 的选择和传感应用
基本信息
- 批准号:9908095
- 负责人:
- 金额:$ 25.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-08-15
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAntibiotic ResistanceBacteriaBacterial InfectionsBindingBiochemicalBiological ModelsCatalytic DNACellsCleaved cellComplexConserved SequenceCytosolDNADependenceDetectionDevelopmentElectron Spin Resonance SpectroscopyElementsEscherichia coliFluorescence Resonance Energy TransferGoalsHealthHeavy IonsHomeostasisHost Defense MechanismHumanIn VitroInfectionIonsIronKineticsKnowledgeLegal patentLengthLifeLinkManganeseMeasurementMetal Ion BindingMetalsMethodsModelingMolecular ConformationMonitorMutagenesisNeurodegenerative DisordersNucleotidesNutritional ImmunityOrganismOutcomeOxidative StressOxidative Stress PathwayPathogenesisPathway interactionsPerformancePhagocytesProcessPublic HealthRandomizedRegulationRespiratory BurstRoleSamplingSignal TransductionSiteSite-Directed MutagenesisSpecificityStaphylococcus aureusStarvationSystemTechnologyTimeTitrationsValidationX-Ray Crystallographyabsorptionbasebiophysical analysisbiophysical propertiescatalystcombatcostdesignfight againstflexibilityfluorophorefunctional grouphigh riskimprovedinsightinterestnext generation sequencingnovelnovel strategiesoxidationpathogenpathogenic bacteriaperiplasmpreventratiometricsensorspatiotemporalstoichiometrythree dimensional structuretooluptake
项目摘要
Project summary / abstract
The overall goal of this project is to develop and validate a novel class of fluorescent sensors for
paramagnetic metal ions (PMIs, e.g., Fe2+, Fe3+, Mn2+ and Mn3+), and to use these sensors to provide deeper
insight into the uptake and homeostasis of PMIs in bacteria and the role of PMIs in pathogenesis. PMIs are
essential elements for both humans and bacteria; the availability of these metal ions is sharply limited for
pathogens, as a part of a host defense mechanism known as “nutritional immunity”; the most well characterized
examples being Fe and Mn sequestration during infection. Moreover, Fe and Mn-regulated pathways are closely
linked with pathways involved in managing oxidative stress, as occurs in phagocytic respiratory burst. Despite
the importance of PMIs in nutritional immunity and oxidative stress pathways, the precise mechanisms dictating
nutritional immunity, bacterial uptake of PMIs, and the ability of certain bacterial strains to circumvent metal
starvation and thrive are unclear. A major barrier to understanding these complex mechanisms is the lack of
spatiotemporal detection of PMIs in their different OSs in living bacterial cells. This proposal seeks to overcome
this major barrier by selection and characterization of PMI-specific DNAzymes, and subsequent development
and validation of DNAzyme-based turn-on fluorescent sensors selective not only for different PMIs, but also
different oxidation states of the same PMI in two model systems (Staphylococcus aureus and Escherichia coli).
Specifically, we plan to employ in vitro selection to obtain DNAzymes with high cleavage activity and strong
affinity for different PMIs (Fe2+ and Mn2+), while maintaining specificity for the different oxidation states of the
same metal ion (Fe2+ vs. Fe3+, and Mn2+ vs. Mn3+). Biochemical studies of these DNAzymes will provide
information about conserved sequences, pH and metal ion dependence, and kinetic parameters of the DNAzyme
activity. Biophysical characterization using spectroscopic methods (UV-vis and EPR) and x-ray crystallography
will elucidate PMI-binding stoichiometry, affinity and selectivity in these DNAzymes. The knowledge acquired will
be used to convert these DNAzymes into PMI sensors using the patented catalytic beacon technology. The use
of a “caged” and FRET DNAzyme sensor enabling quantitative monitoring of metal ion concentration and
speciation in living cells under temporal control will also be explored.
Since pathogenic bacteria such as S. aureus and E. coli are a major public health issue, especially due to
the spread of antibiotic resistance, our ability to develop turn-on fluorescent sensors for the real time detection
of PMIs in cells will overcome a major barrier within the field of nutritional immunity by improving our
understanding of the uptake and homeostasis of PMIs in bacteria and the role of PMIs in pathogenesis.
Ultimately, knowledge gained from these sensors could provide insights necessary to develop novel strategies
to fight against bacterial infection.
项目摘要/摘要
这个项目的总体目标是开发和验证一种新型的荧光传感器,用于
顺磁性金属离子(PMI,例如,Fe2+、Fe3+、Mn2+和Mn3+),并使用这些传感器提供更深层次的
深入了解细菌对PMIs的摄取和动态平衡,以及PMIs在发病机制中的作用。PMI是
对人类和细菌都是必需的元素;这些金属离子的可获得性对于
病原体,作为被称为“营养免疫”的宿主防御机制的一部分;最有特点的
例如,在感染过程中铁和锰被隔离。此外,铁和锰调节的途径是密切的
与管理氧化应激的途径有关,如吞噬细胞呼吸爆发。尽管
PMIs在营养免疫和氧化应激途径中的重要性,其确切的机制决定了
营养免疫、细菌对PMI的摄取以及某些细菌株绕过金属的能力
饥饿和繁荣还不清楚。理解这些复杂机制的一个主要障碍是缺乏
活细菌细胞中不同OSS中PMIs的时空检测。这项提议旨在克服
这一主要障碍是通过选择和鉴定PMI特异性DNAzyme以及随后的开发来实现的
基于DNAzyme的开启荧光传感器的有效性不仅对不同的PMI具有选择性,而且
同一PMI在两个模型体系(金黄色葡萄球菌和大肠杆菌)中的不同氧化状态。
具体地说,我们计划通过体外选择获得具有高切割活性和强切割活性的dna zyme。
对不同PMI(Fe2+和Mn2+)的亲和力,同时保持对不同氧化状态的特异性
相同的金属离子(Fe2+与Fe3+,以及Mn2+与Mn3+)。对这些脱氧核酶的生化研究将提供
关于DNAzyme的保守序列、pH和金属离子依赖性以及动力学参数的信息
活动。利用光谱学方法(UV-Vis和EPR)和X射线结晶学进行生物物理表征
将阐明这些DNAzyme中PMI结合的化学计量、亲和力和选择性。所获得的知识将
利用专利催化信标技术将这些DNAzyme转化为PMI传感器。它的用途
笼式和FRET DNAzyme传感器能够定量监测金属离子浓度和
还将探索在时间控制下的活细胞中的物种形成。
由于金黄色葡萄球菌和大肠杆菌等致病菌是一个主要的公共卫生问题,特别是由于
抗生素耐药性的传播,我们有能力开发开启的荧光传感器进行实时检测
将克服营养免疫领域的一个主要障碍,通过改善我们的
了解细菌对PMIs的摄取和动态平衡,以及PMIs在发病机制中的作用。
最终,从这些传感器获得的知识可以为开发新策略提供必要的见解。
与细菌感染作斗争。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Lu其他文献
Yi Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Lu', 18)}}的其他基金
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10415131 - 财政年份:2021
- 资助金额:
$ 25.74万 - 项目类别:
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10206576 - 财政年份:2021
- 资助金额:
$ 25.74万 - 项目类别:
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10673016 - 财政年份:2021
- 资助金额:
$ 25.74万 - 项目类别:
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10476760 - 财政年份:2021
- 资助金额:
$ 25.74万 - 项目类别:
Selection and sensing applications of DNAzymes selective for paramagnetic metal ions
顺磁性金属离子选择性 DNAzyme 的选择和传感应用
- 批准号:
10523906 - 财政年份:2017
- 资助金额:
$ 25.74万 - 项目类别:
Selection and sensing applications of DNAzymes selective for paramagnetic metal ions
顺磁性金属离子选择性 DNAzyme 的选择和传感应用
- 批准号:
9368105 - 财政年份:2017
- 资助金额:
$ 25.74万 - 项目类别:
Novel DNAzyme sensors for lithium and sodium to understand cellular and molecular mechanisms of lithium treatment of bipolar disorder
新型锂和钠 DNAzyme 传感器可了解锂治疗双相情感障碍的细胞和分子机制
- 批准号:
9169356 - 财政年份:2016
- 资助金额:
$ 25.74万 - 项目类别:
Novel DNAzyme sensors for lithium and sodium to understand cellular and molecular mechanisms of lithium treatment of bipolar disorder
新型锂和钠 DNAzyme 传感器可了解锂治疗双相情感障碍的细胞和分子机制
- 批准号:
9306205 - 财政年份:2016
- 资助金额:
$ 25.74万 - 项目类别:
Selection, Characterization & Application of Paramagnetic Metal-specific DNAzymes
选择、表征
- 批准号:
8073414 - 财政年份:2008
- 资助金额:
$ 25.74万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 25.74万 - 项目类别:
Continuing Grant














{{item.name}}会员




