Optimal targeting for individual and population-level TB prevention
个人和人群层面结核病预防的最佳目标
基本信息
- 批准号:9913107
- 负责人:
- 金额:$ 52.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-05 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAgeAreaBenefits and RisksCategoriesCenters for Disease Control and Prevention (U.S.)CharacteristicsCitiesClinicalClinical ManagementCommunicable DiseasesCommunitiesCompanionsComputer ModelsCost ControlCosts and BenefitsCountryDataDecision AidDecision MakingDemographyDiabetes MellitusDiagnosisDiseaseDisease ProgressionEnd stage renal failureEpidemiologyFaceFutureHIVHealthHealth BenefitHealth Services AccessibilityHomelessnessImmunocompetenceImpairmentImprisonmentIncidenceIndividualInfectionInternationalInternetInterventionLocationModelingMycobacterium tuberculosisNIH Program AnnouncementsOnline SystemsOutcomePatient-Focused OutcomesPatientsPatterns of CarePoliciesPolicy MakerPolicy MakingPopulationPopulation GroupPopulation SizesPrevalencePreventionPreventive servicePreventive therapyPreventive treatmentProbabilityReportingResearchRiskRisk FactorsSeriesServicesSoftware ToolsSpecificityTestingTimeTo specifyTrainingTranslatingTreatment outcomeTuberculosisUnited StatesUnited States National Institutes of HealthVariantVisualizationWorkbaseclinical decision-makingcomputerized toolscostcost effectivenesscost estimatecost-effectiveness ratiodata toolsdisorder riskevidence basehealth economicshigh risk populationimmune functionimprovedincremental cost-effectivenessinterestintervention effectlatent infectionmathematical modelmodels and simulationmortalitynovelpredictive modelingprevention serviceprogramsreactivation from latencyresidencescreeningsextooltransmission processtrenduser-friendlyweb based interface
项目摘要
PROJECT SUMMARY/ABSTRACT
Within the same community, TB risks can differ by several orders of magnitude due to differences in
infectious exposure and immune competence, and TB control depends heavily on targeting services to
those most at risk. Priority groups described by the CDC and other agencies capture major TB risk
factors, but these broad categories include many individuals with low TB risk, and exclude others who
would benefit from screening. Our long-term objective is to provide individually- and locally-tailored
evidence on TB risks and intervention effects, to optimize TB prevention services. In prior work we have
demonstrated the feasibility of estimating TB risks for small population groups, and in Aim 1 we will
create granular estimates of TB risk for the US population, via a Bayesian evidence synthesis combining
time series data on TB cases and population size, prevalence of latent infection (LTBI), and the fraction
of cases due to recent infection. This analysis will allow us to produce individually-tailored risk predictions
to better target preventive services, and provide patients with quantitative information on the risks they
face. The number of patients to whom this applies is substantial—approximately half of all US residents
have been tested for LTBI, and of those testing positive only half initiate treatment. This represents a
large number of people facing decisions about LTBI testing and treatment. Aim 2 will directly address
these questions, creating highly-disaggregated estimates of the costs, harms, and benefits of LTBI
testing and treatment. To do so we will construct a Markov microsimulation model of LTBI screening and
treatment. Using this model we will estimate long-term patient-level outcomes, including changes in TB
risk, survival, costs, and adverse events. Based on these analyses we will develop a user-friendly web
tool to provide patients and clinicians prompt, validated, and individually-tailored information on possible
treatment outcomes. We will also conduct analyses and develop a companion tool that will report the
impact and cost-effectiveness of LTBI screening for user-defined target groups for the purpose of guiding
program decision-making. To increase the reach and impact of these tools we will adapt them for other
countries with TB incidence below 20 per 100,000. In Aim 3 we will develop a transmission-dynamic
simulation model to predict long-term outcomes for a broad set of TB control options (including but not
limited to LTBI treatment) and risk factor trends. The model will be calibrated for multiple jurisdictions,
and a web-based interface will allow users to specify scenarios and visualize outcomes. By identifying
how current and novel interventions can be most effectively deployed to improve health, this research
addresses the NIH’s highest priority area of health economics research, and responds directly to the
need for computational tools and models to better understand and respond to infectious disease risks.
1
项目总结/摘要
在同一社区内,结核病风险可能因以下因素的差异而相差几个数量级:
感染暴露和免疫能力,结核病控制在很大程度上取决于有针对性的服务,
那些最危险的人。疾病预防控制中心和其他机构描述的优先群体捕获了主要的结核病风险
因素,但这些广泛的类别包括许多结核病风险低的个体,并排除其他人,
会从筛查中受益我们的长期目标是提供个性化和本地定制的
结核病风险和干预效果的证据,以优化结核病预防服务。在先前的工作中,我们有
证明了估计小人群结核病风险的可行性,在目标1中,我们将
通过贝叶斯证据合成,结合
结核病病例和人口规模、潜伏感染(LTBI)患病率以及
最近感染的病例。这种分析将使我们能够产生个性化的风险预测
更有针对性的预防服务,并为患者提供有关风险的量化信息,
脸上这一规定适用的患者数量相当可观--约占美国居民总数的一半
已接受LTBI检测,检测呈阳性的人中只有一半开始治疗。这表示
大量的人面临着关于LTBI测试和治疗的决定。目标2将直接解决
这些问题,创建高度分类的成本,危害和LTBI的好处的估计
测试和治疗。为此,我们将构建一个LTBI筛选的马尔可夫微观模拟模型,
治疗使用这个模型,我们将估计长期患者水平的结果,包括结核病的变化
风险、生存率、成本和不良事件。基于这些分析,我们将开发一个用户友好的网站
一种工具,可为患者和临床医生提供及时、有效和个性化的信息,
治疗结果。我们还将进行分析并开发一个配套工具,
为用户定义的目标群体进行LTBI筛查的影响和成本效益,
方案决策。为了扩大这些工具的覆盖面和影响力,我们将对它们进行调整,
结核病发病率低于20/10万的国家。在目标3中,我们将开发一个传输动态
一个模拟模型,用于预测广泛的结核病控制方案(包括但不限于
仅限于LTBI治疗)和风险因素趋势。该模型将针对多个司法管辖区进行校准,
一个基于网络的界面将使用户能够具体说明设想方案并将结果可视化。通过识别
如何最有效地部署当前和新的干预措施来改善健康,这项研究
解决了NIH的卫生经济学研究的最高优先领域,并直接回应
需要计算工具和模型,以更好地了解和应对传染病风险。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICOLAS A MENZIES其他文献
NICOLAS A MENZIES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICOLAS A MENZIES', 18)}}的其他基金
Optimal targeting for individual and population-level TB prevention
个人和人群层面结核病预防的最佳目标
- 批准号:
10308682 - 财政年份:2019
- 资助金额:
$ 52.9万 - 项目类别:
Optimal targeting for individual and population-level TB prevention
个人和人群层面结核病预防的最佳目标
- 批准号:
10536691 - 财政年份:2019
- 资助金额:
$ 52.9万 - 项目类别:
Optimal targeting for individual and population-level TB prevention
个人和人群层面结核病预防的最佳目标
- 批准号:
10065491 - 财政年份:2019
- 资助金额:
$ 52.9万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 52.9万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 52.9万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 52.9万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 52.9万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 52.9万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 52.9万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 52.9万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 52.9万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 52.9万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 52.9万 - 项目类别: