Improved tailoring of depression care using customized clinical decision support
使用定制的临床决策支持改进抑郁症护理的定制
基本信息
- 批准号:9913586
- 负责人:
- 金额:$ 37.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:13 year oldAddressAntidepressive AgentsAnxiety DisordersBiometryBipolar DisorderCaringCharacteristicsChronicClinicalCommunitiesComplexCustomDataDevelopmentEarly treatmentEffectivenessElectronic Health RecordEpidemiologyFundingGoalsHealth PersonnelHealth StatusHealth systemHealthcareIndividualKnowledgeLeadLinkMachine LearningMathematicsMental DepressionMental HealthMethodologyMethodsNational Institute of Mental HealthOutcomePathway interactionsPatient CarePatientsPatternPharmaceutical PreparationsPsychotherapyRandomizedRecommendationReportingResearchResearch MethodologyResearch PersonnelResourcesSample SizeSchizophreniaScientistSelection for TreatmentsSequential TreatmentStatistical MethodsSymptomsSystemTimeTreatment EffectivenessTreatment ProtocolsUnipolar DepressionVariantWorkbasecare providersclinical decision supportclinical decision-makingclinical implementationdata resourcedata structuredepressive symptomsdesignelectronic dataevidence baseexperienceimprovedindividual patientindividualized medicinelarge scale datanovelpractice settingprecision medicinerandomized trialresponsestatisticsstructured datatooltreatment planningtreatment strategy
项目摘要
PROJECT SUMMARY
Treatments for mental health conditions such as unipolar depression provide modest average benefit but have
wide variation between individuals and within individuals over time. Evidence-based customized treatment
protocols would improve the mental health care of many people by providing treatment recommendations for
individuals that take into account potential variation because of personal characteristics such as current health
status, symptoms, and response to earlier treatment. Generating customized treatment protocols requires
large amounts of data, such as from networks of health systems that can link electronic health records from
millions of individuals. Current statistical approaches for discovering customized treatment protocols are limited
in three important ways.
First, current approaches rely on scientists to select the patient characteristics to use to customize
treatments instead of using data to find the patient characteristics that will lead to improved, customized care.
Second, customized treatment protocols discovered with current statistical methods assume no unobserved
differences between individuals who receive various treatment options. Third, investigators do not have ways
to know if the available data contain enough information to discover and compare customized treatment
protocols precisely enough to make clinical decisions. We will address these three limitations by developing
new statistical tools for discovering customized treatment protocols using electronic health records data. Our
research team has expertise and experience in statistics, epidemiology, and mental health care. We will
integrate methods that have been successfully used in other settings to improve statistical approaches for
discovering customized treatment protocols and address these three important limitations.
We will extend machine learning tools for selecting important pieces of information to the time-varying data
structure required for discovering customized treatment protocols. We will build approaches that use available
knowledge about the size of unobserved differences between groups of people who received different
treatments to assess how those differences change study results. By building on the math used to estimate the
sample sizes needed for precision in randomized trials with complex designs, we will develop new formulas for
determining how many people with a particular condition and who took a particular drug are needed in a health
system to provide enough accurate information to discover customized treatment protocols.
Using data from the electronic health records of more than 15,000 patients, we will discover customized
treatment protocols for depression. By improving statistical tools and addressing current limitations, our
customized treatment protocols will have immediate impact for people living with unipolar depression. The
statistical tools we develop will also be useful for discovering customized treatment protocols for people with a
wide variety of mental health conditions.
项目总结
单相抑郁等精神健康疾病的治疗平均受益不大,但有
随着时间的推移,个体之间和个体内部的差异很大。循证定制化治疗
协议将通过提供治疗建议来改善许多人的精神卫生保健
因个人特征(如当前健康状况)而考虑到潜在变化的个人
状态、症状和对早期治疗的反应。生成定制的治疗方案需要
大量数据,例如来自健康系统网络的数据,这些网络可以将电子健康记录从
数百万人。目前用于发现定制治疗方案的统计方法是有限的
在三个重要方面。
首先,目前的方法依赖于科学家选择患者的特征来定制
而不是使用数据来找到将导致改进的定制护理的患者特征。
其次,用目前的统计方法发现的定制治疗方案假定没有未观察到的情况
接受不同治疗选择的个体之间的差异。第三,调查人员没有办法
了解可用数据是否包含足够的信息来发现和比较定制治疗
精确到足以做出临床决定的方案。我们将通过开发以下方法来解决这三个限制
使用电子健康记录数据发现定制治疗方案的新统计工具。我们的
研究团队在统计学、流行病学和精神卫生保健方面拥有专业知识和经验。我们会
整合已在其他环境中成功使用的方法,以改进统计方法
发现定制的治疗方案并解决这三个重要限制。
我们将把机器学习工具扩展到时变数据,以选择重要的信息片段
发现定制治疗方案所需的结构。我们将构建使用可用的方法
关于不同人群之间未观察到的差异大小的知识
评估这些差异如何改变研究结果的治疗方法。通过建立在用于估计
在复杂设计的随机试验中,精确度所需的样本量,我们将开发新的公式
确定健康需要多少患有特定疾病的人和服用特定药物的人
系统提供足够准确的信息来发现定制的治疗方案。
使用来自15,000多名患者的电子健康记录数据,我们将发现定制的
抑郁症的治疗方案。通过改进统计工具和解决当前的限制,我们的
定制的治疗方案将对单相抑郁症患者产生立竿见影的影响。这个
我们开发的统计工具也将有助于发现定制的治疗方案,为患有
精神健康状况多种多样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erica Moodie其他文献
Erica Moodie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erica Moodie', 18)}}的其他基金
Improved tailoring of depression care using customized clinical decision support
使用定制的临床决策支持改进抑郁症护理的定制
- 批准号:
10164627 - 财政年份:2018
- 资助金额:
$ 37.28万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.28万 - 项目类别:
Research Grant