Dynamic cardiac SPECT

动态心脏SPECT

基本信息

项目摘要

Project Summary (Abstract) Quantitation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR) is not currently widely performed for diagnosis and management of coronary artery disease (CAD). The development of a widely available, accurate, inexpensive, quantitative noninvasive method for the measurement of MBF and CFR would provide a thorough assessment of the full extent of CAD and diffuse microvascular diseases. It would also pro- vide an early detection of the development of cardiac allograft vasculopathy (CAV) in orthotopic heart transplant (OHT) patients. Single photon emission computed tomography (SPECT), the most widely applied noninvasive method for the detection and risk stratification of CAD, is less costly for both operator and patients and more widely available than positron emission tomography (PET), the gold standard for the quantification of MBF and CFR. In our earlier work we developed methods to noninvasively quantify MBF and CFR with the acquisition of dynamic data on a conventional SPECT camera. This method demonstrated the capability of estimating MBF from widely used clinical imaging agents with marginal flow-extraction products. Our hypothesis is that dy- namic cardiac SPECT with conventional 99mTc-labeled agents provides quantitation of MBF and CFR which cannot be obtained by conventional static SPECT. This promises to improve the diagnosis and prognostic as- sessment of CAD, and permit early identification of the onset and progression of CAV in OHT patients. We propose a systematic study of quantitative myocardial perfusion imaging using a combined dynamic and static cardiac SPECT (DSC-SPECT) rest/stress protocol 1) to assess the extent of coronary involvement in patients with known and highly suspected CAD, and 2) to evaluate MBF and CFR as an early indicator of CAV. A unique aspect of this work is our ability to quantify MBF by estimating kinetic model parameters and the blood input function, directly from acquired projections using slow camera rotation speed without any need for arterial blood sampling. Our methods include corrections for cardiac motion due to cardiac deformation and respiration (6D dynamic modeling). Our study addresses the challenges related to the development of algorithms that convert dynamically acquired scintigraphic data to meaningful clinical information and optimizes the related clinical protocols. We believe that with the successful demonstration of dynamic SPECT in the proposed protocols, our methods will support a change of the current static SPECT myocardial perfusion imaging (MPI) protocols to dynamic SPECT MPI protocols with application of even standard dual-headed cameras.
项目摘要(摘要) 局部心肌血流量(MBF)和冠状动脉血流储备(CFR)的定量目前还不广泛 用于冠状动脉疾病(CAD)的诊断和管理。一个广泛的发展 可用的,准确的,廉价的,定量的无创方法测量MBF和CFR将 全面评估CAD和弥漫性微血管疾病的程度。它也会支持- 在原位心脏移植中早期发现心脏移植物血管病变(CAV) (OHT)患者 单光子发射计算机断层扫描(SPECT),应用最广泛的非侵入性方法 对于CAD的检测和风险分层,对于操作者和患者来说成本更低, 正电子发射断层扫描(PET)是MBF和CFR定量的金标准。在 我们早期的工作,我们开发的方法,以非侵入性定量MBF和CFR与收购的动态 在传统的SPECT相机上的数据。该方法证明了从以下参数估计MBF的能力: 广泛使用的临床显像剂,具有边缘流动提取产物。我们的假设是- 使用常规99 mTc标记剂的动态心脏SPECT提供了MBF和CFR的定量, 不能通过常规静态SPECT获得。这有望改善诊断和预后,因为- 评估CAD,并允许早期识别OHT患者中CAV的发作和进展。我们 提出了一个系统的研究定量心肌灌注成像使用结合动态和静态 心脏SPECT(DSC-SPECT)静息/负荷方案1)评估患者冠状动脉受累程度 已知和高度怀疑CAD,和2)评估MBF和CFR作为CAV的早期指标。一个独特 这项工作的一个方面是我们能够通过估计动力学模型参数和血液输入来量化MBF 功能,直接从采集的投影使用缓慢的相机旋转速度,而无需任何动脉血 取样.我们的方法包括由于心脏变形和呼吸(6D)引起的心脏运动校正 动态建模)。我们的研究解决了与算法开发相关的挑战, 动态采集的造影数据,以有意义的临床信息,并优化相关的临床 协议.我们相信,随着动态SPECT在拟议协议中的成功演示, 方法将支持当前静态SPECT心肌灌注成像(MPI)协议的变更, 动态SPECT MPI协议,甚至标准双头摄像机的应用。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic cardiac PET imaging: Technological improvements advancing future cardiac health.
动态心脏 PET 成像:技术进步促进未来心脏健康。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GRANT T GULLBERG其他文献

GRANT T GULLBERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GRANT T GULLBERG', 18)}}的其他基金

Dynamic cardiac SPECT
动态心脏SPECT
  • 批准号:
    9318808
  • 财政年份:
    2017
  • 资助金额:
    $ 60.15万
  • 项目类别:
Molecular Imaging of Cardiac Hypertrophy Using microPET and Pinhole SPECT
使用 microPET 和针孔 SPECT 进行心脏肥大的分子成像
  • 批准号:
    7837611
  • 财政年份:
    2008
  • 资助金额:
    $ 60.15万
  • 项目类别:
Molecular Imaging of Cardiac Hypertrophy Using microPET and Pinhole SPECT
使用 microPET 和针孔 SPECT 进行心脏肥大的分子成像
  • 批准号:
    7528849
  • 财政年份:
    2008
  • 资助金额:
    $ 60.15万
  • 项目类别:
Molecular Imaging of Cardiac Hypertrophy Using microPET and Pinhole SPECT
使用 microPET 和针孔 SPECT 进行心脏肥大的分子成像
  • 批准号:
    7658219
  • 财政年份:
    2008
  • 资助金额:
    $ 60.15万
  • 项目类别:
Molecular Imaging of Cardiac Hypertrophy Using microPET and Pinhole SPECT
使用 microPET 和针孔 SPECT 进行心脏肥大的分子成像
  • 批准号:
    8069862
  • 财政年份:
    2008
  • 资助金额:
    $ 60.15万
  • 项目类别:
DYNAMIC CARDIAC SPECT IMAGING
动态心脏光谱成像
  • 批准号:
    2226905
  • 财政年份:
    1995
  • 资助金额:
    $ 60.15万
  • 项目类别:
Dynamic Cardiac SPECT Imaging
动态心脏 SPECT 成像
  • 批准号:
    8041588
  • 财政年份:
    1995
  • 资助金额:
    $ 60.15万
  • 项目类别:
DYNAMIC CARDIAC SPECT IMAGING
动态心脏光谱成像
  • 批准号:
    2638004
  • 财政年份:
    1995
  • 资助金额:
    $ 60.15万
  • 项目类别:
Dynamic Cardiac SPECT Imaging
动态心脏 SPECT 成像
  • 批准号:
    8467004
  • 财政年份:
    1995
  • 资助金额:
    $ 60.15万
  • 项目类别:
DYNAMIC CARDIAC SPECT IMAGING
动态心脏光谱成像
  • 批准号:
    6537083
  • 财政年份:
    1995
  • 资助金额:
    $ 60.15万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 60.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了