CRCNS: Role of Mossy Cells in Gating Plasticity Hippocampal Granule Cells
CRCNS:苔藓细胞在门控可塑性海马颗粒细胞中的作用
基本信息
- 批准号:9913880
- 负责人:
- 金额:$ 19.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiophysicsBrainBrain regionCalcium SignalingCalcium SpikesCellsCognitionCommunicationComputer SimulationDendritesDetectionDevelopmentDistalElementsEpilepsyExhibitsFeedbackFrequenciesFunctional ImagingFunctional disorderGermanyGoalsHippocampus (Brain)HumanImageIn VitroInstructionInterdisciplinary StudyInternationalInterneuronsLearning DisordersMapsMemoryMemory DisordersNeuronsPathway interactionsPatientsPatternPattern RecognitionPharmacological TreatmentPopulationProcessResearchResearch Project GrantsRodentRoleSeizuresSeveritiesSupporting CellSynapsesSynaptic plasticityTechniquesTemporal Lobe EpilepsyTestingTraumatic Brain InjuryWorkartificial neural networkcell typeclassical conditioningdentate gyrusdesignentorhinal cortexexperiencegranule cellin vivoinformation processinginsightinterdisciplinary approachlong term memoryneural circuitplace fieldsresponsespatial memorytreatment strategytwo-photonway finding
项目摘要
We propose an international collaborative multidisciplinary research project to investigate neural circuit mechanisms
of spatial memory formation in the mammalian brain. In both humans and rodents, the hippocampus is a brain region
required to store long-term memories. This process depends on activity- dependent changes in the strengths of
connections between neurons, known as synaptic plasticity. In the input layer of the hippocampus, the dentate gyrus,
a principal cell type called the granule cell receives synaptic inputs from cortex carrying information about spatial
navigation, and it is thought that synaptic plasticity at these inputs stores a map of space in dentate granule cells. Like
most hippocampal and cortical circuits, the dentate gyrus is comprised of multiple neuronal cell types, many of which
are inhibitory interneurons. However, the dentate gyrus also contains a unique class of local excitatory interneurons,,
called mossy cells, which form local synapses onto granule cells and inhibitory interneurons, but do not project outside
the dentate gyrus. It is a major goal of this project to reconcile the direct excitatory and indirect inhibitory influences of
mossy cells on granule cells, which could have opposing effects on spatial information processing and memory
storage. Recent work has shown that mossy cells are required for the formation of new spatial memories, though the
underlying mechanism is completely unknown. Interestingly, the mossy cell inputs and cortical inputs to granule cells
segregate onto proximal and distal regions of granule cell dendrites, respectively. In other cell types, synchronous
activation of proximal and distal input pathways evokes local dendritic spikes that potently induce synaptic plasticity.
However, whether this occurs in granule cells in response to coincidence of feedforward input from cortex and
feedback input from mossy cells has not been investigated. Therefore, in order to test the role of mossy cell input in
gating dendritic spiking and plasticity in dentate granule cells, we propose to 1) directly record from granule cell
dendrites in vitro in response to precisely controlled input patterns, 2) directly image the activity of granule cell
dendrites in vivo during spatial navigation while chemogenetically silencing mossy cells, and 3) develop
experimentally-constrained computational models of dentate gyrus cells and circuits to investigate how a dedicated
feedback neuron type like mossy cells affects the storage and recall of information in a neural circuit.
RELEVANCE (See instructions):
Humans with temporal lobe epilepsy and traumatic brain injury exhibit specific degeneration of hippocampal mossy
cells, and suffer from deficits in memory and cognition. While existing pharmacological treatments reduce seizure
frequency and severity in some epileptic patients, no treatments exist for the associated learning and memory
disorders. We expect our research to generate new insight and inform the development of new treatment strategies
for neural circuit dysfunction.
我们提出了一个国际合作的多学科研究项目,调查神经回路机制
哺乳动物大脑中空间记忆形成的过程。在人类和啮齿动物中,海马体是大脑的一个区域,
需要储存长期记忆。这一过程取决于活动依赖的变化,
神经元之间的连接,称为突触可塑性。在海马体的输入层,齿状回,
一种称为颗粒细胞的主要细胞类型接收来自皮层的突触输入,
导航,并且认为这些输入的突触可塑性在齿状颗粒细胞中存储空间地图。像
大多数海马和皮层回路,齿状回是由多种神经元细胞类型,其中许多,
是抑制性中间神经元然而,齿状回还包含一类独特的局部兴奋性中间神经元,
这种细胞称为苔藓细胞,它在颗粒细胞和抑制性中间神经元上形成局部突触,但不向外投射。
齿状回这是一个主要目标,这个项目是调和的直接兴奋和间接抑制的影响,
颗粒细胞上的苔藓细胞,这可能对空间信息处理和记忆产生相反的影响
存储.最近的研究表明,苔藓细胞是形成新的空间记忆所必需的,尽管
根本机制完全未知。有趣的是,苔藓细胞和皮层对颗粒细胞的输入
分别分离到颗粒细胞树突的近端和远端区域。在其他细胞类型中,同步
近端和远端输入通路的激活引起局部树突棘波,其有效地诱导突触可塑性。
然而,这是否发生在颗粒细胞中,以响应来自皮层和皮层的前馈输入的巧合,
还没有研究来自苔藓细胞的反馈输入。因此,为了测试苔藓细胞输入的作用,
门控树突棘和可塑性在齿状颗粒细胞,我们建议1)直接记录从颗粒细胞
树突在体外对精确控制的输入模式的反应,2)直接成像颗粒细胞的活动
树突在体内的空间导航,而化学沉默苔藓细胞,和3)发展
齿状回细胞和电路的实验约束计算模型,以研究如何一个专门的
反馈神经元类型,如苔藓细胞,影响神经回路中信息的存储和回忆。
相关性(参见说明):
颞叶癫痫和创伤性脑损伤患者海马苔藓特异性变性
细胞,并患有记忆和认知缺陷。虽然现有的药物治疗可以减少癫痫发作
频率和严重程度在一些癫痫患者,没有治疗相关的学习和记忆
紊乱我们希望我们的研究能够产生新的见解,并为新的治疗策略的发展提供信息。
神经回路功能障碍
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON D MILSTEIN其他文献
AARON D MILSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON D MILSTEIN', 18)}}的其他基金
CRCNS: Coordinating learning by top-down gating of plasticity in dendrites
CRCNS:通过树突可塑性的自上而下门控来协调学习
- 批准号:
10830625 - 财政年份:2023
- 资助金额:
$ 19.39万 - 项目类别:
CRCNS: Role of Mossy Cells in Gating Plasticity Hippocampal Granule Cells
CRCNS:苔藓细胞在门控可塑性海马颗粒细胞中的作用
- 批准号:
10222247 - 财政年份:2019
- 资助金额:
$ 19.39万 - 项目类别:
相似海外基金
Brain Mechanisms underlying Performance in ITD Processing: Biophysics to Behaviour
ITD 处理中表现的大脑机制:从生物物理学到行为
- 批准号:
G1002267-E01/1 - 财政年份:2011
- 资助金额:
$ 19.39万 - 项目类别:
Research Grant
CELLULAR BIOPHYSICS OF BRAIN NEURONS IN CULTURE
培养中脑神经元的细胞生物物理学
- 批准号:
3409540 - 财政年份:1988
- 资助金额:
$ 19.39万 - 项目类别:
CELLULAR BIOPHYSICS OF BRAIN NEURONS IN CULTURE
培养中脑神经元的细胞生物物理学
- 批准号:
3409542 - 财政年份:1988
- 资助金额:
$ 19.39万 - 项目类别:
CELLULAR BIOPHYSICS OF BRAIN NEURONS IN CULTURE
培养中脑神经元的细胞生物物理学
- 批准号:
3409541 - 财政年份:1988
- 资助金额:
$ 19.39万 - 项目类别:
CELLULAR BIOPHYSICS OF BRAIN NEURONS IN CULTURE
培养中脑神经元的细胞生物物理学
- 批准号:
3409539 - 财政年份:1988
- 资助金额:
$ 19.39万 - 项目类别:
CELLULAR BIOPHYSICS OF BRAIN NEURONS IN CULTURE
培养中脑神经元的细胞生物物理学
- 批准号:
3409538 - 财政年份:1987
- 资助金额:
$ 19.39万 - 项目类别:
SFB 1372: Magnetoreception and navigation in vertebrates: from biophysics to brain and behaviour
SFB 1372:脊椎动物的磁接收和导航:从生物物理学到大脑和行为
- 批准号:
395940726 - 财政年份:
- 资助金额:
$ 19.39万 - 项目类别:
Collaborative Research Centres