CRCNS: Coordinating learning by top-down gating of plasticity in dendrites
CRCNS:通过树突可塑性的自上而下门控来协调学习
基本信息
- 批准号:10830625
- 负责人:
- 金额:$ 41.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-14 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:BehaviorBenchmarkingBiologicalBiologyBrainBrain regionCalcium SpikesCognitiveComplexComputer ModelsCuesDendritesDiscriminationDiscrimination LearningDopamineEnvironmentFeedbackFutureGoalsGrainHippocampusImageInterneuronsKnowledgeLearningLocationMachine LearningMedialMemoryMemory DisordersModelingMusNetwork-basedNeuronsOutcomeOutputPatternPerformancePhysiologyPopulationProcessRegulationResearchRewardsRoleSensorySensory ProcessShapesSignal TransductionSpecial EventStimulusSynapsesSynaptic plasticitySystemTechniquesTestingTherapeutic InterventionWorkartificial neural networkawakebehavioral outcomecandidate identificationcognitive functioncomputational neurosciencedesignentorhinal cortexexperimental studyhippocampal pyramidal neuronimprovedin vivoinnovationinsightlearning algorithmnetwork modelsneural circuitneuronal circuitryneuroregulationsensory inputsupervised learningsynergismtheories
项目摘要
There is a central problem in biological learning known as the “credit assignment problem”: how does
information about the outcome of a decision or behavior modify the right synapses in the right neurons
across multiple brain regions to improve future performance? The standard solution to this problem in
artificial neural networks is to perform direct gradient descent, which minimizes error in the output of a
network by precisely adjusting the strengths of every connection in proportion to that error. However, it is
unlikely that the brain is able to compute the impact of each synapse on performance error and
“backpropagate” fine-grained error signals across multiple layers of neuronal circuitry to every synapse.
Recent work identified a new candidate biological mechanism for supervised learning in the brain. In
addition to “bottom-up” connections that process sensory inputs, neurons also send “top-down”
connections to the dendrites of neurons in lower layers. This feedback drives special events called
“dendritic calcium spikes” that induce a potent form of synaptic plasticity and cause neurons to become
selective for stimulus features in as few as a single trial, a phenomenon called “one-shot learning.” This
project aims to develop new learning theory inspired by these experimental observations, and to
experimentally test predictions of this theory in awake, behaving mice to better understand how top-down
instructive signals in the brain coordinate learning across multiple layers of neuronal circuitry by regulating
dendritic calcium spiking and associated plasticity.
The team synergizes expertise in neuronal cellular and synaptic physiology, systems and computational
neuroscience, and machine learning to better understand an important cognitive function - memory
formation during goal-directed learning. A major objective is to develop and critically test a new theory of
learning based on the regulation of dendritic calcium spikes and associated synaptic plasticity.
Computational modeling will directly inform the proposed experiments, which entail imaging and
manipulating neuronal population activity in vivo during spatial foraging behavior in mice. Preliminary
results suggest that incorporation of these insights from biology into artificial neural networks leads to
enhanced performance compared to standard techniques, highlighting the transformative potential of the
proposed approach.
在生物学学习中有一个中心问题,称为“学分分配问题”:
关于决策或行为结果的信息会改变正确神经元中的正确突触
来提高未来的表现吗这个问题的标准解决方案是
人工神经网络是执行直接梯度下降,这最大限度地减少了输出的误差,
通过精确地调整每个连接的强度与该误差成比例来构建网络。但据
大脑不太可能计算出每个突触对性能错误的影响,
“反向传播”细粒度的错误信号通过多层神经元电路到达每个突触。
最近的工作确定了大脑中监督学习的新候选生物机制。在
除了处理感觉输入的“自下而上”的连接外,神经元还发送“自上而下”的信息。
与下层神经元树突的连接。这种反馈推动了称为
“树突状钙尖峰”,诱导突触可塑性的有效形式,并导致神经元成为
选择性的刺激功能,在短短的一个单一的试验,一种现象称为“一次性学习”。这
该项目旨在开发新的学习理论,这些实验观察的启发,并
在清醒的、行为正常的老鼠身上实验性地测试这一理论的预测,以更好地理解自上而下的
大脑中的指导信号通过调节神经元回路的多个层来协调学习,
树突状钙尖峰和相关的可塑性。
该团队协同神经元细胞和突触生理学,系统和计算
神经科学和机器学习,以更好地了解一个重要的认知功能-记忆
在目标导向学习中形成。一个主要目标是发展和批判性地测试一个新的理论,
基于树突钙峰和相关突触可塑性的调节的学习。
计算建模将直接为拟议的实验提供信息,这些实验需要成像和
在小鼠的空间觅食行为期间操纵体内神经元群体活性。初步
结果表明,将这些来自生物学的见解结合到人工神经网络中,
与标准技术相比,性能得到增强,突出了
建议的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON D MILSTEIN其他文献
AARON D MILSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON D MILSTEIN', 18)}}的其他基金
CRCNS: Role of Mossy Cells in Gating Plasticity Hippocampal Granule Cells
CRCNS:苔藓细胞在门控可塑性海马颗粒细胞中的作用
- 批准号:
10222247 - 财政年份:2019
- 资助金额:
$ 41.36万 - 项目类别:
CRCNS: Role of Mossy Cells in Gating Plasticity Hippocampal Granule Cells
CRCNS:苔藓细胞在门控可塑性海马颗粒细胞中的作用
- 批准号:
9913880 - 财政年份:2019
- 资助金额:
$ 41.36万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 41.36万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 41.36万 - 项目类别:
Continuing Grant