Digital High Resolution Melt and Machine Learning for Rapid and Specific Diagnosis in Neonatal Sepsis
数字高分辨率熔解和机器学习用于新生儿败血症的快速和特异性诊断
基本信息
- 批准号:9915874
- 负责人:
- 金额:$ 48.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlgorithmsAntibiotic ResistanceAntibioticsBacteremiaBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBiological AssayBirth WeightBloodBlood VolumeBlood specimenChildClinicalDNADNA SequenceDataDatabasesDetectionDiagnosisDiagnosticDisastersDyesEmerging TechnologiesExposure toFingerprintFluorescenceFundingGenesGenomeGenotypeGoalsGoldHourImmune responseIndividualInfectionMachine LearningMeasuresMicrobeModernizationNeonatalNucleotidesOpticsOrganismPatientsPerformancePredispositionPublic HealthRNAReactionReportingResearchResistanceResolutionSamplingSepsisSymptomsSystemTechnologyTestingTherapeuticTimeTrainingTubeUnited StatesValidationVariantVery Low Birth Weight InfantViralWhole BloodWomanantimicrobialbasecirculating DNAclinically actionableclinically relevantcostdiagnosis standarddigitalearly onsetinterdisciplinary approachintrapartummachine learning algorithmmeltingmicrobialneonatal sepsisneonateovertreatmentpathogenpathogen genomepathogen genomicspathogenic funguspathogenic viruspoint of careprematurerapid diagnosisresistance genesample collectionseptictherapy resistantviral detection
项目摘要
Project Summary
Blood culture sensitivity in neonates is poor but is the “Gold Standard” for the diagnosis of sepsis.
Universal genotyping of pathogen genomic sequences using High Resolution Melt (U-HRM) provides a simple,
low cost, rapid, and modern alternative to blood culture testing. By measuring the fluorescence of an
intercalating dye as PCR-amplified pathogen DNA fragments are heated and disassociate, sequence defined
melt curves are generated with single-nucleotide resolution in a closed-tube reaction. We have advanced U-
HRM into a digital PCR format (U-dHRM), where DNA sequences that are present in mixtures are individually
amplified and identified as is needed for polymicrobial infections. We have also established unique signature
melt curves for 37 bacterial species that commonly infect older children and adults and automatically identify
them using machine learning technology. With the goal of creating an accurate and valid test for the timely
diagnosis of neonatal sepsis, we will advance this technology to identify unique fungal, viral, and bacterial
HRM signatures along with antibiotic resistance genes with an accuracy of 99-100% on minimal blood volume
(1mL). Our aims are: Aim 1. Optimize and assess the U-dHRM platform for neonatal bacteremia diagnosis by
expand our bacterial database (13 additional bacteria) to detect causes of >99% of neonatal bacterial
infections, expand our antibiotic resistance gene database to include five clinically actionable genes, and
assessing the performance of the system for bacteremia diagnosis in mock and clinical whole blood samples;
Aim 2. Advance the U-dHRM platform for simultaneous detection of fungal and viral pathogens by upgrading
our optical system to enable expansion to fungal and viral detection in a high-throughput format, multiplexing
the assay to expand to viral and fungal pathogens causing >99% non-bacterial infections, and conducting
analytical validation of the multiplexed platform using mock whole blood samples; and Aim 3. Advance the
machine learning algorithm for detection of emerging pathogens by developing and integrating an anomaly
detection algorithm for reporting emerging pathogens that are not included in our database and validating the
algorithm using data generated in Aims 1 and 2. Thus, this proposal directly addresses the funding call by
applying a multidisciplinary approach to overcome the biomedical challenge of rapidly diagnosis sepsis, a
hidden public health disaster.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Irene Fraley其他文献
Stephanie Irene Fraley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Irene Fraley', 18)}}的其他基金
Project 2: Functional Genetic Networks for Systems-Guided Precision Medicine
项目 2:系统引导精准医学的功能遗传网络
- 批准号:
10704609 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
Project 2: Functional Genetic Networks for Systems-Guided Precision Medicine
项目 2:系统引导精准医学的功能遗传网络
- 批准号:
10525589 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
Digital High Resolution Melt and Machine Learning for Rapid and Specific Diagnosis in Neonatal Sepsis
数字高分辨率熔解和机器学习用于新生儿败血症的快速和特异性诊断
- 批准号:
9794293 - 财政年份:2018
- 资助金额:
$ 48.62万 - 项目类别:
Digital High Resolution Melt and Machine Learning for Rapid and Specific Diagnosis in Neonatal Sepsis
数字高分辨率熔解和机器学习用于新生儿败血症的快速和特异性诊断
- 批准号:
10394878 - 财政年份:2018
- 资助金额:
$ 48.62万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 48.62万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 48.62万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 48.62万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 48.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 48.62万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 48.62万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 48.62万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 48.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 48.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 48.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)