Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
基本信息
- 批准号:9916920
- 负责人:
- 金额:$ 60.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcetalsAcidsAddressAdjuvantAffectAgonistAlgorithmsAnimal ModelAnimalsAnthrax diseaseAntibody ResponseAntigen PresentationAntigensAntiviral AgentsAvian InfluenzaB-Cell ActivationBiopolymersBirdsCD4 Positive T LymphocytesCellsCenters for Disease Control and Prevention (U.S.)Cessation of lifeConsensusCytosolDataDependenceDextransDoseDrug Delivery SystemsEmergency SituationEmulsionsEncapsulatedEndotoxinsEvaluationFDA approvedFerretsFormulationGenetic DriftGlycolatesGoalsHemagglutininHourHumanImmuneImmune responseIndividualInfectionInfection preventionInfluenzaInfluenza A Virus, H1N1 SubtypeInfluenza A virusIntramuscularLeadMethodologyModelingMusMutationNeuraminidaseNosePathogenesisPathogenicityPathologyPeriodicityPhagocytesPhagosomesPlaguePolyestersPolymersPopulationProtein DenaturationProtein SubunitsRouteScheduleShapesStimulator of Interferon GenesSubunit VaccinesSurfaceSystemTestingTimeToxic effectVaccinatedVaccinationVaccinesViral Load resultVirus Diseasesaluminum sulfatecomputer generatedcontrolled releasecost effectivedesignfluhead-to-head comparisonimmunological synapseimprovedinfluenza virus vaccineinfluenzavirusinnovationmouse modelnanonanoparticlenovelpandemic diseasepandemic influenzaparticlepreventprocess optimizationprotective efficacyreceptorresponsevaccine deliveryvaccine developmentvaccine efficacy
项目摘要
ABSTRACT
The WHO estimates there are approximately 5 million cases of influenza infections annually, with approximately
500,000 deaths occurring globally. The most cost-effective protection against influenza is vaccination.
Unfortunately, due to yearly antigenic shifts and drifts, current seasonal vaccines are ineffective. There is a need
for a better flu vaccine. In order to design a better flu vaccine, we plan on optimizing the immune synapse using
nano/microparticles (MPs) fabricated from the polymer acetalated dextran (Ac-DEX). Our previous data has
shown a dependence of particle degradation and optimal immune response against an influenza antigen. Not
only does the release of the antigen effect the immune response, the release of the adjuvant is also important.
The optimized degradation of both adjuvant and antigen has a drastic change in survival compared to non-
optimized formulations. Our particle system is unique because it relies on the highly tunable polymer Ac-DEX.
Ac-DEX is ideal for delivery of agents to phagocytic cells because it is acid-sensitive and has significantly
increased degradation in the low acid (~pH 5) of the phagosome. In addition to this it has tunable degradation
rates that can range from hours to months, which is a unique range from commonly used polyesters (e.g.
poly(lactic-co-glycolic acid) (PLGA)) that have degradation on the order of months. Moreover, Ac-DEX is unique
from polyesters because its degradation products are pH neutral, and do not have the potential to shift the local
pH or damage sensitive payloads. We have three specific aims exploring various optimizations of our particle
system. Aim 1 is focused on formulation of the polymer and particles. The release rate of the adjuvant will be
explored. Ac-DEX polymer with various cyclic acetal coverages will be fabricated to degrade over a broad range
of times. In Aim 2 we will evaluate the effect of loading of a novel influenza antigen either on the surface or
encapsulated into the MPs. We will explore degradation rates on antigen release as well as delivery routes in
determining the optimal delivery of influenza antigens that provide a broad range of protection. In Aim 3 we will
explore our optimized system in protecting ferrets. Ferrets are the ideal large animal model for influenza infection.
Using this model, we will evaluate the vaccine efficacy of our formulation, in comparison to a commercially
available flu vaccine.
抽象的
世卫组织估计每年大约有500万例流感感染病例
全球500,000人死亡。针对流感的最具成本效益的保护是疫苗接种。
不幸的是,由于每年的抗原转移和漂移,目前的季节性疫苗无效。有需要
为了获得更好的流感疫苗。为了设计更好的流感疫苗,我们计划使用
纳米/微粒(MPS)是由聚合物乙酰化葡萄糖(AC-DEX)制造的。我们以前的数据有
显示颗粒降解和最佳免疫反应对流感抗原的依赖性。不是
仅释放抗原效应免疫反应,佐剂的释放也很重要。
辅助和抗原的优化降解与非 -
优化的配方。我们的粒子系统是独一无二的,因为它依赖于高度可调的聚合物AC-DEX。
AC-DEX非常适合向吞噬细胞递送剂,因为它具有酸敏感,并且具有显着的
吞噬体的低酸(〜pH 5)降解增加。除此之外,它还具有可调的降解
从小时到几个月的速率,这是一个独特的范围,从常用的聚酯(例如
在几个月内降解的聚(乳酸 - 乙醇酸))。而且,AC-DEX是独一无二的
从polyesters出发,因为它的降解产物是pH中性的,并且没有可能移动局部的潜力
pH或伤害敏感有效载荷。我们有三个特定的目的探索粒子的各种优化
系统。 AIM 1专注于聚合物和颗粒的配方。佐剂的释放率将是
探索。将制造具有各种环状乙酰覆盖范围的AC-DEX聚合物,以在广泛的范围内降解
时间。在AIM 2中,我们将评估新型流感抗原在表面或
封装在国会议员中。我们将探索抗原释放的降解率以及在
确定提供广泛保护的流感抗原的最佳输送。在目标3中,我们将
探索我们在保护雪貂的优化系统。雪貂是流感感染的理想大型动物模型。
使用此模型,我们将与商业上的配方疫苗功效进行评估
可用的流感疫苗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy M Ainslie其他文献
Kristy M Ainslie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristy M Ainslie', 18)}}的其他基金
Mechanistic evaluation of mast cell agonists combined with TLR, NOD and STING agonists.
肥大细胞激动剂联合 TLR、NOD 和 STING 激动剂的机制评估。
- 批准号:
10657847 - 财政年份:2023
- 资助金额:
$ 60.43万 - 项目类别:
Tunable Temporal Drug Release for Optimized Synergistic Combination Therapy of Glioblastoma
可调节的时间药物释放,用于优化胶质母细胞瘤的协同联合治疗
- 批准号:
10449370 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Diversity Supplement - Formulation to Generate Tolerance Towards Type 1 Diabetes
多样性补充剂 - 产生对 1 型糖尿病耐受性的配方
- 批准号:
10560761 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
- 批准号:
10436981 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
- 批准号:
10713401 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Tunable Temporal Drug Release for Optimized Synergistic Combination Therapy of Glioblastoma
可调节的时间药物释放,用于优化胶质母细胞瘤的协同联合治疗
- 批准号:
10675073 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
- 批准号:
10310642 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Formulation to Generate Tolerance Towards Type 1 Diabetes
产生对 1 型糖尿病耐受性的配方
- 批准号:
10615119 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Tunable Temporal Drug Release for Optimized Synergistic Combination Therapy of Glioblastoma
可调节的时间药物释放,用于优化胶质母细胞瘤的协同联合治疗
- 批准号:
10309049 - 财政年份:2021
- 资助金额:
$ 60.43万 - 项目类别:
Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
- 批准号:
10328236 - 财政年份:2020
- 资助金额:
$ 60.43万 - 项目类别:
相似国自然基金
胃肠道微生物宏基因组的氨基酸消旋酶挖掘及分析
- 批准号:32360034
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
甘油制α-氨基酸钌基双金属催化剂的构筑及产物调控策略
- 批准号:22308255
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究和营清热方及其重要单体绿原酸下调AGEs/SOGA1信号通路抑制糖尿病视网膜病变的作用机制
- 批准号:82305319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丙酮酸羧化酶乳酸化修饰介导TCA回补途径调控肺泡巨噬细胞极化在脓毒症ARDS中的机制研究
- 批准号:82300100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
去势环境下CAF来源的CREB3L4通过增强癌细胞脂肪酸合成促进前列腺癌转移的机制研究
- 批准号:82303434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
New Methods for the Synthesis of Biologically Active Compounds
合成生物活性化合物的新方法
- 批准号:
10551507 - 财政年份:2023
- 资助金额:
$ 60.43万 - 项目类别:
Hepatotoxic mechanisms of anti-HIV- and anti-COVID-19 drugs and substance use disorders
抗 HIV 和抗 COVID-19 药物和物质使用障碍的肝毒性机制
- 批准号:
10684434 - 财政年份:2023
- 资助金额:
$ 60.43万 - 项目类别:
Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
- 批准号:
10328236 - 财政年份:2020
- 资助金额:
$ 60.43万 - 项目类别:
Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
- 批准号:
10540741 - 财政年份:2020
- 资助金额:
$ 60.43万 - 项目类别:
Formation of C-C Bonds from Unactivated C(sp3)-H Bonds of Hydrosilanes Derived from Common Functional Groups
由常见官能团衍生的氢硅烷的未活化 C(sp3)-H 键形成 C-C 键
- 批准号:
10316163 - 财政年份:2020
- 资助金额:
$ 60.43万 - 项目类别: